Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferon gamma (original) (raw)

Abstract

The antiproliferative effects of interferon alpha (IFN-alpha) and interferon gamma (IFN-gamma) were found to be cell-dependent. Among the human cell lines examined, IFN-gamma had a greater antiproliferative effect against cell lines that exhibited induction of indoleamine 2,3-dioxygenase, such as the KB oral carcinoma or WiDr colon adenocarcinoma, than against those that lacked the enzyme activity, such as the SW480 colon adenocarcinoma or NCI-H128 small-cell lung carcinoma. Induction of this dioxygenase showed a clear temporal relationship with increased metabolism of L-tryptophan and the depletion of this amino acid in the culture medium. While 70-80% of L-tryptophan remained in the medium of IFN-alpha- or vehicle-treated cells, virtually all of this amino acid was depleted in the medium of the IFN-gamma-treated group following 2-3 days of culture. Supplementing the growth medium with additional L-tryptophan reversed the antiproliferative effect of IFN-gamma against KB cells in a dose- and time-dependent manner. The antiproliferative effects of IFN-alpha and IFN-gamma on SW480 and NCI-H128 cells, which are independent of the dioxygenase activity, and the inability of added L-tryptophan to reverse the effects of IFN-gamma in WiDr cells suggest multiple mechanisms of action of the IFNs. The data show that the antiproliferative effect of IFN-gamma through induction of indoleamine 2,3-dioxygenase, with a consequent L-tryptophan deprivation, is an effective means of regulating cell growth.

1242

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baglioni C. Interferon-induced enzymatic activities and their role in the antriviral state. Cell. 1979 Jun;17(2):255–264. doi: 10.1016/0092-8674(79)90151-x. [DOI] [PubMed] [Google Scholar]
  2. Blalock J. E., Georgiades J. A., Langford M. P., Johnson H. M. Purified human immune interferon has more potent anticellular activity than fibroblast or leukocyte interferon. Cell Immunol. 1980 Feb;49(2):390–394. doi: 10.1016/0008-8749(80)90041-6. [DOI] [PubMed] [Google Scholar]
  3. Brunner M. Regulation of DNA synthesis by amino acid limitation. Cancer Res. 1973 Jan;33(1):29–32. [PubMed] [Google Scholar]
  4. Buffett R. F., Ito M., Cairo A. M., Carter W. A. Antiproliferative activity of highly purified mouse interferon: brief communication. J Natl Cancer Inst. 1978 Jan;60(1):243–246. doi: 10.1093/jnci/60.1.243. [DOI] [PubMed] [Google Scholar]
  5. Byrne G. I., Lehmann L. K., Landry G. J. Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun. 1986 Aug;53(2):347–351. doi: 10.1128/iai.53.2.347-351.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clemens M. J., McNurlan M. A. Regulation of cell proliferation and differentiation by interferons. Biochem J. 1985 Mar 1;226(2):345–360. doi: 10.1042/bj2260345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Colonno R. J. Accumulation of newly synthesized mRNAs in response to human fibroblast (beta) interferon. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4763–4766. doi: 10.1073/pnas.78.8.4763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colonno R. J., Pang R. H. Induction of unique mRNAs by human interferons. J Biol Chem. 1982 Aug 25;257(16):9234–9237. [PubMed] [Google Scholar]
  9. Cook J. S., Pogson C. I., Smith S. A. Indoleamine 2,3-dioxygenase. A new, rapid, sensitive radiometric assay and its application to the study of the enzyme in rat tissues. Biochem J. 1980 Sep 1;189(3):461–466. doi: 10.1042/bj1890461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooney D. A., Handschumacher R. E. L-asparaginase and L-asparagine metabolism. Annu Rev Pharmacol. 1970;10:421–440. doi: 10.1146/annurev.pa.10.040170.002225. [DOI] [PubMed] [Google Scholar]
  11. Dykens J. A., Sullivan S. G., Stern A. Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate. Biochem Pharmacol. 1987 Jan 15;36(2):211–217. doi: 10.1016/0006-2952(87)90691-5. [DOI] [PubMed] [Google Scholar]
  12. Farrell P. J., Sen G. C., Dubois M. F., Ratner L., Slattery E., Lengyel P. Interferon action: two distinct pathways for inhibition of protein synthesis by double-stranded RNA. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5893–5897. doi: 10.1073/pnas.75.12.5893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Friedman R. M., Sonnabend J. A. Inhibition of interferon action by puromycin. J Immunol. 1965 Oct;95(4):696–703. [PubMed] [Google Scholar]
  14. GHOLSON R. K., UEDA I., OGASAWARA N., HENDERSON L. M. THE ENZYMATIC CONVERSION OF QUINOLINATE TO NICOTINIC ACID MONONUCLEOTIDE IN MAMMALIAN LIVER. J Biol Chem. 1964 Apr;239:1208–1214. [PubMed] [Google Scholar]
  15. GREENGARD O., FEIGELSONP The purification and properties of liver tryptophan pyrrolase. J Biol Chem. 1962 Jun;237:1903–1907. [PubMed] [Google Scholar]
  16. Gresser I. How does interferon inhibit tumor growth? Interferon. 1985;6:93–126. [PubMed] [Google Scholar]
  17. Gresser I., Tovey M. G. Antitumor effects of interferon. Biochim Biophys Acta. 1978 Oct 27;516(2):231–247. doi: 10.1016/0304-419x(78)90009-4. [DOI] [PubMed] [Google Scholar]
  18. Gupta S. L., Rubin B. Y., Holmes S. L. Interferon action: induction of specific proteins in mouse and human cells by homologous interferons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4817–4821. doi: 10.1073/pnas.76.10.4817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. HENDERSON L. M. Quinolinic acid metabolism; replacement of nicotinic acid for the growth of the rat and Neurospora. J Biol Chem. 1949 Dec;181(2):677–685. [PubMed] [Google Scholar]
  20. Hayaishi O., Hirata F., Ohnishi T., Henry J. P., Rosenthal I., Katoh A. Indoleamine 2,3-dioxygenase: incorporation of 18O2-- and 18O2 into the reaction products. J Biol Chem. 1977 May 25;252(10):3548–3550. [PubMed] [Google Scholar]
  21. Higuchi K., Hayaishi O. Enzymic formation of D-kynurenine from D-tryptophan. Arch Biochem Biophys. 1967 May;120(2):397–403. doi: 10.1016/0003-9861(67)90256-1. [DOI] [PubMed] [Google Scholar]
  22. Hilfenhaus J., Damm H., Johannsen R. Sensitivity of various human lymphoblastoid cells to the antiviral and anticellular activity of human leukocyte interferon. Arch Virol. 1977;54(3):271–277. doi: 10.1007/BF01314795. [DOI] [PubMed] [Google Scholar]
  23. Hilfenhaus J., Karges H. E. Growth inhibition of human lymphoblastoid cells by interferon preparations, obtained from human leukocytes. Z Naturforsch C. 1974 Sep-Oct;29C(9-10):618–622. doi: 10.1515/znc-1974-9-1027. [DOI] [PubMed] [Google Scholar]
  24. Ito M., Buffett R. F. Cytocidal effect of purified human fibroblast interferon on tumor cells in vitro. J Natl Cancer Inst. 1981 May;66(5):819–825. [PubMed] [Google Scholar]
  25. KNOX W. E., MEHLER A. H. The conversion of tryptophan to kynurenine in liver. I. The coupled tryptophan peroxidase-oxidase system forming formylkynurenine. J Biol Chem. 1950 Nov;187(1):419–430. [PubMed] [Google Scholar]
  26. Kerr I. M., Brown R. E., Hovanessian A. G. Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA. Nature. 1977 Aug 11;268(5620):540–542. doi: 10.1038/268540a0. [DOI] [PubMed] [Google Scholar]
  27. Kerr I. M., Brown R. E. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):256–260. doi: 10.1073/pnas.75.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LEVINE S. EFFECT OF ACTINOMYCIN D AND PUROMYCIN DIHYDROCHLORIDE ON ACTION OF INTERFERON. Virology. 1964 Dec;24:586–588. doi: 10.1016/0042-6822(64)90211-9. [DOI] [PubMed] [Google Scholar]
  29. Lengyel P. Biochemistry of interferons and their actions. Annu Rev Biochem. 1982;51:251–282. doi: 10.1146/annurev.bi.51.070182.001343. [DOI] [PubMed] [Google Scholar]
  30. McMartin K. E., Martin-Amat G., Makar A. B., Tephly T. R. Methanol poisoning. V. Role of formate metabolism in the monkey. J Pharmacol Exp Ther. 1977 Jun;201(3):564–572. [PubMed] [Google Scholar]
  31. Munro H. N. Role of amino acid supply in regulating ribosome function. Fed Proc. 1968 Sep-Oct;27(5):1231–1237. [PubMed] [Google Scholar]
  32. Ozaki Y., Edelstein M. P., Duch D. S. The actions of interferon and antiinflammatory agents of induction of indoleamine 2,3-dioxygenase in human peripheral blood monocytes. Biochem Biophys Res Commun. 1987 May 14;144(3):1147–1153. doi: 10.1016/0006-291x(87)91431-8. [DOI] [PubMed] [Google Scholar]
  33. Ozaki Y., Nichol C. A., Duch D. S. Utilization of dihydroflavin mononucleotide and superoxide anion for the decyclization of L-tryptophan by murine epididymal indoleamine 2,3-dioxygenase. Arch Biochem Biophys. 1987 Aug 15;257(1):207–216. doi: 10.1016/0003-9861(87)90560-1. [DOI] [PubMed] [Google Scholar]
  34. Ozaki Y., Reinhard J. F., Jr, Nichol C. A. Cofactor activity of dihydroflavin mononucleotide and tetrahydrobiopterin for murine epididymal indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun. 1986 Jun 30;137(3):1106–1111. doi: 10.1016/0006-291x(86)90339-6. [DOI] [PubMed] [Google Scholar]
  35. Pfefferkorn E. R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A. 1984 Feb;81(3):908–912. doi: 10.1073/pnas.81.3.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Samanta H., Dougherty J. P., Lengyel P. Synthesis of (2'-5')(A)n from ATP. Characteristics of the reaction catalyzed by (2'-5')(A)n synthetase purified from mouse Ehrlich ascites tumor cells treated with interferon. J Biol Chem. 1980 Oct 25;255(20):9807–9813. [PubMed] [Google Scholar]
  37. Schwarcz R., Whetsell W. O., Jr, Mangano R. M. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science. 1983 Jan 21;219(4582):316–318. doi: 10.1126/science.6849138. [DOI] [PubMed] [Google Scholar]
  38. Sen G. C., Shaila S., Lebleu B., Brown G. E., Desrosiers R. C., Lengyel P. Impairment of reovirus mRNA methylation in extracts of interferon-treated Ehrilich ascites tumor cells: further characteristics of the phenomenon. J Virol. 1977 Jan;21(1):69–83. doi: 10.1128/jvi.21.1.69-83.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shulman L., Revel M. Interferon-dependent induction of mRNA activity for (2'-5')oligo-isoadenylate synthetase. Nature. 1980 Nov 6;288(5786):98–100. doi: 10.1038/288098a0. [DOI] [PubMed] [Google Scholar]
  40. Taylor J. Inhibition of interferon action by actinomycin. Biochem Biophys Res Commun. 1964;14:447–451. doi: 10.1016/0006-291x(64)90084-1. [DOI] [PubMed] [Google Scholar]
  41. Tobey R. A., Ley K. D. Isoleucine-mediated regulation of genome repliction in various mammalian cell lines. Cancer Res. 1971 Jan;31(1):46–51. [PubMed] [Google Scholar]
  42. Woolley P. V., Dion R. L., Bono V. H., Jr Effects of tryptophan deprivation on L1210 cells in culture. Cancer Res. 1974 May;34(5):1010–1014. [PubMed] [Google Scholar]
  43. Yamamoto S., Hayaishi O. Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. J Biol Chem. 1967 Nov 25;242(22):5260–5266. [PubMed] [Google Scholar]
  44. Yamazaki F., Kuroiwa T., Takikawa O., Kido R. Human indolylamine 2,3-dioxygenase. Its tissue distribution, and characterization of the placental enzyme. Biochem J. 1985 Sep 15;230(3):635–638. doi: 10.1042/bj2300635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yasui H., Takai K., Yoshida R., Hayaishi O. Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase: its possible occurrence in cancer patients. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6622–6626. doi: 10.1073/pnas.83.17.6622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yoshida R., Imanishi J., Oku T., Kishida T., Hayaishi O. Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc Natl Acad Sci U S A. 1981 Jan;78(1):129–132. doi: 10.1073/pnas.78.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yoshida R., Nukiwa T., Watanabe Y., Fujiwara M., Hirata F., Hayaishi O. Regulation of indoleamine 2,3-dioxygenase activity in the small intestine and the epididymis of mice. Arch Biochem Biophys. 1980 Aug;203(1):343–351. doi: 10.1016/0003-9861(80)90185-x. [DOI] [PubMed] [Google Scholar]
  48. Zilberstein A., Dudock B., Berissi H., Revel M. Control of messenger RNA translation by minor species of leucyl-transfer RNA in extracts from interferon-treated L cells. J Mol Biol. 1976 Nov;108(1):43–54. doi: 10.1016/s0022-2836(76)80093-9. [DOI] [PubMed] [Google Scholar]
  49. Zilberstein A., Kimchi A., Schmidt A., Revel M. Isolation of two interferon-induced translational inhibitors: a protein kinase and an oligo-isoadenylate synthetase. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4734–4738. doi: 10.1073/pnas.75.10.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. de Ferra F., Baglioni C. Increase in S-adenosylhomocysteine concentration in interferon-treated HeLa cells and inhibition of methylation of vesicular stomatitis virus mRNA. J Biol Chem. 1983 Feb 25;258(4):2118–2121. [PubMed] [Google Scholar]