Sodium channels in dendrites of rat cortical pyramidal neurons (original) (raw)

Abstract

The voltage-dependent properties that have been directly demonstrated in Purkinje cell and hippocampal pyramidal cell dendrites play an important role in the integrative capacities of these neurons. By contrast, the properties of neocortical pyramidal cell dendritic membranes have been more difficult to assess. Active dendritic conductances near sites of synaptic input would have an important effect on the input-output characteristics of these neurons. In the experiments reported here, we obtained direct evidence for the existence of voltage-dependent Na+ channels on the dendrites of neocortical neurons by using cell-attached patch and whole cell recordings from acutely isolated rat neocortical pyramidal cells. The qualitative and quantitative properties of dendritic and somatic currents were indistinguishable. Insofar as Na+ currents are concerned, the soma and primary apical dendrite can be considered as one relatively uniform compartment. Similar dendritic Na+ currents on dendrites in mature neurons would play an important role in determining the integrative properties of these cortical units.

2473

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alger B. E., McCarren M., Fisher R. S. On the possibility of simultaneously recording from two cells with a single microelectrode in the hippocampal slice. Brain Res. 1983 Jun 27;270(1):137–141. doi: 10.1016/0006-8993(83)90801-6. [DOI] [PubMed] [Google Scholar]
  2. Alkon D. L., Rasmussen H. A spatial-temporal model of cell activation. Science. 1988 Feb 26;239(4843):998–1005. doi: 10.1126/science.2830669. [DOI] [PubMed] [Google Scholar]
  3. Almers W., Stirling C. Distribution of transport proteins over animal cell membranes. J Membr Biol. 1984;77(3):169–186. doi: 10.1007/BF01870567. [DOI] [PubMed] [Google Scholar]
  4. Angelides K. J., Elmer L. W., Loftus D., Elson E. Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J Cell Biol. 1988 Jun;106(6):1911–1925. doi: 10.1083/jcb.106.6.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barrett J. N. Motoneuron dendrites: role in synaptic integration. Fed Proc. 1975 Apr;34(5):1398–1407. [PubMed] [Google Scholar]
  6. Benardo L. S., Masukawa L. M., Prince D. A. Electrophysiology of isolated hippocampal pyramidal dendrites. J Neurosci. 1982 Nov;2(11):1614–1622. doi: 10.1523/JNEUROSCI.02-11-01614.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brismar T., Gilly W. F. Synthesis of sodium channels in the cell bodies of squid giant axons. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1459–1463. doi: 10.1073/pnas.84.5.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Catterall W. A. Localization of sodium channels in cultured neural cells. J Neurosci. 1981 Jul;1(7):777–783. doi: 10.1523/JNEUROSCI.01-07-00777.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deschênes M. Dendritic spikes induced in fast pyramidal tract neurons by thalamic stimulation. Exp Brain Res. 1981;43(3-4):304–308. doi: 10.1007/BF00238371. [DOI] [PubMed] [Google Scholar]
  11. ECCLES J. C., LIBET B., YOUNG R. R. The behaviour of chromatolysed motoneurones studied by intracellular recording. J Physiol. 1958 Aug 29;143(1):11–40. doi: 10.1113/jphysiol.1958.sp006041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gamble E., Koch C. The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. Science. 1987 Jun 5;236(4806):1311–1315. doi: 10.1126/science.3495885. [DOI] [PubMed] [Google Scholar]
  13. Goodman C. S., Heitler W. J. Electrical properties of insect neurones with spiking and non-spiking somata: normal, axotomized, and colchicine-treated neurones. J Exp Biol. 1979 Dec;83:95–121. doi: 10.1242/jeb.83.1.95. [DOI] [PubMed] [Google Scholar]
  14. Grace A. A., Bunney B. S. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--2. Action potential generating mechanisms and morphological correlates. Neuroscience. 1983 Oct;10(2):317–331. doi: 10.1016/0306-4522(83)90136-7. [DOI] [PubMed] [Google Scholar]
  15. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  16. Huguenard J. R., Hamill O. P., Prince D. A. Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J Neurophysiol. 1988 Mar;59(3):778–795. doi: 10.1152/jn.1988.59.3.778. [DOI] [PubMed] [Google Scholar]
  17. Jefferys J. G. Initiation and spread of action potentials in granule cells maintained in vitro in slices of guinea-pig hippocampus. J Physiol. 1979 Apr;289:375–388. doi: 10.1113/jphysiol.1979.sp012742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kay A. R., Wong R. K. Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Methods. 1986 May;16(3):227–238. doi: 10.1016/0165-0270(86)90040-3. [DOI] [PubMed] [Google Scholar]
  19. Kuno M., Llinás R. Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat. J Physiol. 1970 Nov;210(4):807–821. doi: 10.1113/jphysiol.1970.sp009243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Llinás R. Electroresponsive properties of dendrites in central neurons. Adv Neurol. 1975;12:1–13. [PubMed] [Google Scholar]
  21. Llinás R., Sugimori M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol. 1980 Aug;305:197–213. doi: 10.1113/jphysiol.1980.sp013358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MacVicar B. A., Dudek F. E. Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science. 1981 Aug 14;213(4509):782–785. doi: 10.1126/science.6266013. [DOI] [PubMed] [Google Scholar]
  23. Maekawa K., Purpura D. P. Properties of spontaneous and evoked synaptic activities of thalamic ventrobasal neurons. J Neurophysiol. 1967 Mar;30(2):360–381. doi: 10.1152/jn.1967.30.2.360. [DOI] [PubMed] [Google Scholar]
  24. Masukawa L. M., Prince D. A. Synaptic control of excitability in isolated dendrites of hippocampal neurons. J Neurosci. 1984 Jan;4(1):217–227. doi: 10.1523/JNEUROSCI.04-01-00217.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miyakawa H., Kato H. Active properties of dendritic membrane examined by current source density analysis in hippocampal CA1 pyramidal neurons. Brain Res. 1986 Dec 10;399(2):303–309. doi: 10.1016/0006-8993(86)91520-9. [DOI] [PubMed] [Google Scholar]
  26. Moore J. W., Stockbridge N., Westerfield M. On the site of impulse initiation in a neurone. J Physiol. 1983 Mar;336:301–311. doi: 10.1113/jphysiol.1983.sp014582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  28. Numann R. E., Wong R. K. Voltage-clamp study on GABA response desensitization in single pyramidal cells dissociated from the hippocampus of adult guinea pigs. Neurosci Lett. 1984 Jun 29;47(3):289–294. doi: 10.1016/0304-3940(84)90528-7. [DOI] [PubMed] [Google Scholar]
  29. PURPURA D. P., SHOFER R. J. CORTICAL INTRACELLULAR POTENTIALS DURING AUGMENTING AND RECRUITING RESPONSES. I. EFFECTS OF INJECTED HYPERPOLARIZING CURRENTS ON EVOKED MEMBRANE POTENTIAL CHANGES. J Neurophysiol. 1964 Mar;27:117–132. doi: 10.1152/jn.1964.27.2.117. [DOI] [PubMed] [Google Scholar]
  30. Pitman R. M., Tweedle C. D., Cohen M. J. Electrical responses of insect central neurons: augmentation by nerve section or colchicine. Science. 1972 Nov 3;178(4060):507–509. doi: 10.1126/science.178.4060.507. [DOI] [PubMed] [Google Scholar]
  31. Purpura D. P., McMurtry J. G., Leonard C. F., Malliani A. Evidence for dendritic origin of spikes without depolarizing prepotentials in hippocampal neurons during and after seizure. J Neurophysiol. 1966 Sep;29(5):954–979. doi: 10.1152/jn.1966.29.5.954. [DOI] [PubMed] [Google Scholar]
  32. Richardson T. L., Turner R. W., Miller J. J. Action-potential discharge in hippocampal CA1 pyramidal neurons: current source-density analysis. J Neurophysiol. 1987 Nov;58(5):981–996. doi: 10.1152/jn.1987.58.5.981. [DOI] [PubMed] [Google Scholar]
  33. Sernagor E., Yarom Y., Werman R. Sodium-dependent regenerative responses in dendrites of axotomized motoneurons in the cat. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7966–7970. doi: 10.1073/pnas.83.20.7966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spear P. J. Evidence for spike propagation in cortical dendrites. Exp Neurol. 1972 Apr;35(1):111–121. doi: 10.1016/0014-4886(72)90063-5. [DOI] [PubMed] [Google Scholar]
  35. Titmus M. J., Faber D. S. Altered excitability of goldfish Mauthner cell following axotomy. II. Localization and ionic basis. J Neurophysiol. 1986 Jun;55(6):1440–1454. doi: 10.1152/jn.1986.55.6.1440. [DOI] [PubMed] [Google Scholar]
  36. Traub R. D., Llinás R. Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. J Neurophysiol. 1979 Mar;42(2):476–496. doi: 10.1152/jn.1979.42.2.476. [DOI] [PubMed] [Google Scholar]
  37. Waechter C. J., Schmidt J. W., Catterall W. A. Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells. J Biol Chem. 1983 Apr 25;258(8):5117–5123. [PubMed] [Google Scholar]
  38. Weiss R. E., Roberts W. M., Stühmer W., Almers W. Mobility of voltage-dependent ion channels and lectin receptors in the sarcolemma of frog skeletal muscle. J Gen Physiol. 1986 Jun;87(6):955–983. doi: 10.1085/jgp.87.6.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wollner D. A., Catterall W. A. Localization of sodium channels in axon hillocks and initial segments of retinal ganglion cells. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8424–8428. doi: 10.1073/pnas.83.21.8424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wong R. K., Prince D. A., Basbaum A. I. Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci U S A. 1979 Feb;76(2):986–990. doi: 10.1073/pnas.76.2.986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wong R. K., Prince D. A. Dendritic mechanisms underlying penicillin-induced epileptiform activity. Science. 1979 Jun 15;204(4398):1228–1231. doi: 10.1126/science.451569. [DOI] [PubMed] [Google Scholar]
  42. Woody C. D., Gruen E., McCarley K. Intradendritic recordings from neurons of motor cortex of cats. J Neurophysiol. 1984 May;51(5):925–938. doi: 10.1152/jn.1984.51.5.925. [DOI] [PubMed] [Google Scholar]