Vesicular stomatitis virus growth in Drosophila melanogaster cells: G protein deficiency (original) (raw)

Abstract

In cultured Drosophila melanogaster cells, vesicular stomatitis virus (VSV) established a persistent, noncytopathic infection. No inhibition of host protein synthesis occurred even though all cells were initially infected. No defective interfering particles were detected, which would explain the establishment of the carrier state. In studies of the time course of viral protein synthesis in Drosophila cells, N, NS, and M viral polypeptides were readily detected within 1 h of infection. The yield of G protein and one of its precursors; G1, was very low at any time of the virus cycle; the released viruses always contained four to five times less G than those produced by chicken embryo cells, whatever the VSV strain or serotype used for infection and whatever the Drosophila cell line used as host. Actinomycin D added to the cells before infection enhanced VSV growth up to eight times. G and G1 synthesis increased much more than that of the other viral proteins when the cells were pretreated with the drug; nevertheless, the released viruses exhibited the same deficiency in G protein as the VSV released from untreated cells. Host cell control on both G-protein maturation process and synthesis at traduction level is discussed in relation to G biological properties.

411

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arstila P. Small-sized haemagglutinin of vesicular stomatitis virus released spontaneously and with Nonidet P 40. Acta Pathol Microbiol Scand B Microbiol Immunol. 1973 Feb;81(1):27–36. doi: 10.1111/j.1699-0463.1973.tb02183.x. [DOI] [PubMed] [Google Scholar]
  2. Banerjee K., Singh K. R. Establishment of carrier cultures of Aedes albopictur cell line infected with arboviruses. Indian J Med Res. 1968 Jun;56(6):812–814. [PubMed] [Google Scholar]
  3. Buhler J. M., Sentenac A., Fromageot P. Isolation, structure, and general properties of yeast ribonucleic acid polymerase A (or I). J Biol Chem. 1974 Sep 25;249(18):5963–5970. [PubMed] [Google Scholar]
  4. Burge B. W., Huang A. S. Comparison of membrane protein glycopeptides of Sindbis virus and vesicular stomatitis virus. J Virol. 1970 Aug;6(2):176–182. doi: 10.1128/jvi.6.2.176-182.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bussereau F. Etude du symptome de la sensibilité au CO2 produit par le virus de la stomatite vésiculaire chez Drosophila melanogaster. 3. Souches de différents sérotypes. Ann Microbiol (Paris) 1973 Jun;124A(4):535–554. [PubMed] [Google Scholar]
  6. Bussereau F., de Kinkelin P., Le Berre M. Infectivity of fish rhabdoviruses for Drosophila melanogaster. Ann Microbiol (Paris) 1975 Apr;126(3):389–395. [PubMed] [Google Scholar]
  7. Cartwright B., Smale C. J., Brown F. Surface structure of vesicular stomatitis virus. J Gen Virol. 1969 Jul;5(1):1–10. doi: 10.1099/0022-1317-5-1-1. [DOI] [PubMed] [Google Scholar]
  8. Davey M. W., Dalgarno L. Semliki Forest virus replication in cultured Aedes albopictus cells: studies on the establishment of persistence. J Gen Virol. 1974 Sep;24(3):453–463. doi: 10.1099/0022-1317-24-3-453. [DOI] [PubMed] [Google Scholar]
  9. Davey M. W., Dennett D. P., Dalgarno L. The growth of two togaviruses in cultured mosquito and vertebrate cells. J Gen Virol. 1973 Aug;20(2):225–232. doi: 10.1099/0022-1317-20-2-225. [DOI] [PubMed] [Google Scholar]
  10. Deutsch V. Parental G protein reincorporation by a vesicular stomatitis virus temperature-sensitive mutant of complementation group V at nonpermissive temperature. Virology. 1976 Feb;69(2):607–616. doi: 10.1016/0042-6822(76)90489-x. [DOI] [PubMed] [Google Scholar]
  11. Dezélée S., Sentenac A. Role of DNA-RNA hybrids in eukaryotes. Purification and properties of yeast RNA polymerase B. Eur J Biochem. 1973 Apr 2;34(1):41–52. doi: 10.1111/j.1432-1033.1973.tb02726.x. [DOI] [PubMed] [Google Scholar]
  12. Dezélée S., Wyers F., Sentenac A., Fromageot P. Two forms of RNA polymerase B in yeast. Proteolytic conversion in vitro of enzyme BI into BII. Eur J Biochem. 1976 Jun 1;65(2):543–552. doi: 10.1111/j.1432-1033.1976.tb10372.x. [DOI] [PubMed] [Google Scholar]
  13. Doyle M., Holland J. J. Prophylaxis and immunization in mice by use of virus-free defective T particles to protect against intracerebral infection by vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2105–2108. doi: 10.1073/pnas.70.7.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eaton B. T. Evidence for the synthesis of defection interfering particles by Aedes albopictus cells persistently infected with Sindbis virus. Virology. 1977 Apr;77(2):843–848. doi: 10.1016/0042-6822(77)90503-7. [DOI] [PubMed] [Google Scholar]
  15. Echalier G., Ohanessian A. In vitro culture of Drosophila melanogaster embryonic cells. In Vitro. 1970 Nov-Dec;6(3):162–172. doi: 10.1007/BF02617759. [DOI] [PubMed] [Google Scholar]
  16. Emerson S. U., Yu Y. Both NS and L proteins are required for in vitro RNA synthesis by vesicular stomatitis virus. J Virol. 1975 Jun;15(6):1348–1356. doi: 10.1128/jvi.15.6.1348-1356.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grace T. D. Establishment of a line of mosquito (Aedes aegypti L.) cells grown in vitro. Nature. 1966 Jul 23;211(5047):366–367. doi: 10.1038/211366a0. [DOI] [PubMed] [Google Scholar]
  18. Herreng F. Etude de la multiplication de l'arbovirus Sindbis chez la Drosophile. C R Acad Sci Hebd Seances Acad Sci D. 1967 Jun 12;264(24):2854–2857. [PubMed] [Google Scholar]
  19. Holland J. J., Villarreal L. P., Breindl M. Factors involved in the generation and replication of rhabdovirus defective T particles. J Virol. 1976 Mar;17(3):805–815. doi: 10.1128/jvi.17.3.805-815.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Holland J. J., Villarreal L. P. Persistent noncytocidal vesicular stomatitis virus infections mediated by defective T particles that suppress virion transcriptase. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2956–2960. doi: 10.1073/pnas.71.8.2956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hunt L. A., Summers D. F. Glycosylation of vesicular stomatitis virus glycoprotein in virus-infected HeLa cells. J Virol. 1976 Dec;20(3):646–657. doi: 10.1128/jvi.20.3.646-657.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Igarashi A., Stollar V. Failure of defective interfering particles of Sindbis virus produced in BHK or chicken cells to affect viral replication in Aedes albopictus cells. J Virol. 1976 Aug;19(2):398–408. doi: 10.1128/jvi.19.2.398-408.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kelley J. M., Emerson S. U., Wagner R. R. The glycoprotein of vesicular stomatitis virus is the antigen that gives rise to and reacts with neutralizing antibody. J Virol. 1972 Dec;10(6):1231–1235. doi: 10.1128/jvi.10.6.1231-1235.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. L'HERITIER P. The hereditary virus of Drosophila. Adv Virus Res. 1958;5:195–245. [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Lafay F. Envelope proteins of vesicular stomatitis virus: effect of temperature-sensitive mutations in complementation groups III and V. J Virol. 1974 Nov;14(5):1220–1228. doi: 10.1128/jvi.14.5.1220-1228.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Laurent J. Mise en évidence d'une différence sérologique entre le virus adapté à la Drosophile et la souche initiale du virus de la stomatite vésiculaire. C R Seances Soc Biol Fil. 1970;164(3):541–545. [PubMed] [Google Scholar]
  28. Martinet C., Combard A., Printz-Ané C., Printz P. Envelope proteins and replication of vesicular stomatitis virus: in vivo effects of RNA+ temperature-sensitive mutations on viral RNA synthesis. J Virol. 1979 Jan;29(1):123–133. doi: 10.1128/jvi.29.1.123-133.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McSharry J. J., Choppin P. W. Biological properties of the VSV glycoprotein. 1. Effects of the isolated glycoprotein on host macromolecular synthesis. Virology. 1978 Jan;84(1):172–182. doi: 10.1016/0042-6822(78)90229-5. [DOI] [PubMed] [Google Scholar]
  30. McSharry J. J., Ledda C. A., Freiman H. J., Choppin P. W. Biological properties of the VSV glycoprotein. II. Effects of the host cell and of the glycoprotein carbohydrate composition on hemagglutination. Virology. 1978 Jan;84(1):183–188. doi: 10.1016/0042-6822(78)90230-1. [DOI] [PubMed] [Google Scholar]
  31. McSharry J., Benzinger R. Concentration and purification of vesicular stomatitis virus by polyethylene glycol "precipitation". Virology. 1970 Mar;40(3):745–746. doi: 10.1016/0042-6822(70)90219-9. [DOI] [PubMed] [Google Scholar]
  32. Mudd J. A., Leavitt R. W., Kingsbury D. T., Holland J. J. Natural selection of mutants of vesicular stomatitis virus by cultured cells of Drosophila melanogaster. J Gen Virol. 1973 Sep;20(3):341–351. doi: 10.1099/0022-1317-20-3-341. [DOI] [PubMed] [Google Scholar]
  33. Ohanessian A., Echalier G. Multiplication du virus Sindbis chez Drosophila melanogaster (insecte diptère), en conditions expérimentales. C R Acad Sci Hebd Seances Acad Sci D. 1967 Mar 6;264(10):1356–1358. [PubMed] [Google Scholar]
  34. Peleg J. Growth of Aedes aegypti embryonic cells and tissues in vitro. Experientia. 1966 Aug 15;22(8):555–556. doi: 10.1007/BF01898690. [DOI] [PubMed] [Google Scholar]
  35. Peleg J. Growth of arboviruses in monolayers from subcultured mosquito embryo cells. Virology. 1968 Aug;35(4):617–619. doi: 10.1016/0042-6822(68)90293-6. [DOI] [PubMed] [Google Scholar]
  36. Rehácek J. The growth of arboviruses in mosquito cells in vitro. Acta Virol. 1968 May;12(3):241–246. [PubMed] [Google Scholar]
  37. Schloemer R. H., Wagner R. R. Mosquito cells infected with vesicular stomatitis virus yield unsialylated virions of low infectivity. J Virol. 1975 Apr;15(4):1029–1032. doi: 10.1128/jvi.15.4.1029-1032.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schnitzer T. J., Dickson C., Weiss R. A. Morphological and biochemical characterization of viral particles produced by the tsO45 mutant of vesicular stomatitis virus at restrictive temperature. J Virol. 1979 Jan;29(1):185–195. doi: 10.1128/jvi.29.1.185-195.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Toneguzzo F., Ghosh H. P. Synthesis and glycosylation in vitro of glycoprotein of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1516–1520. doi: 10.1073/pnas.74.4.1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. WAGNER R. R., LEVEY A. H., SNYDER R. M., RATCLIFF G. A., Jr, HYATT D. F. BIOLOGIC PROPERTIES OF TWO PLAQUE VARIANTS OF VESICULAR STOMATITIS VIRUS (INDIANA SEROTYPE). J Immunol. 1963 Jul;91:112–122. [PubMed] [Google Scholar]
  41. Wagner R. R., Schnaitman T. C., Snyder R. M., Schnaitman C. A. Protein composition of the structural components of vesicular stomatitis virus. J Virol. 1969 Jun;3(6):611–618. doi: 10.1128/jvi.3.6.611-618.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]