In vivo effects of IgA and IgG2a anti-CD3 isotype switch variants (original) (raw)

Abstract

Side effects after the first administration of OKT3, a murine anti-CD3 monoclonal antibody (mAb) of the IgG2a class, are largely attributed to the release of cytokines as a result of T cell activation caused by interaction with Fc receptors (FcR) on human monocytes. As human monocytes possess FcR for murine IgG2a but not for IgA, it is expected that an anti-CD3 mAb of the IgA class causes less side-effects than an IgG2a anti-CD3 mAb of the same idiotype. To test this hypothesis we treated 20 renal transplant patients prophylactically with either IgG2a or IgA anti-CD3 mAb in a prospective randomized double-blind study. The patients received 0.5 mg anti-CD3 mAb, either IgA (T3.A) or IgG2a (T3.G2a), twice daily during 10 d. Rejection incidence after T3.A and T3.G2a was not significantly different. Side effects score after the first administration of mAb was significantly less after T3.A than after T3.G2a (0.7 vs 2.7, P = 0.002). IL-6 and gamma IFN levels increased significantly at 3 h after T3.G2a, but not after T3.A. The TNF peak level occurring at 1 h after T3.A was much lower than after T3.G2a. In plasma, complement and neutrophil activation products only increased after T3.G2a and not after T3.A. Both T3.A and T3.G2a resulted in a complete depletion of CD3+ cells, but after T3.A, CD3 depletion was of shorter duration than after IgG2a. Finally, in contrast to T3.G2a, T3.A did not affect coagulation and fibrinolysis. In conclusion, an anti-CD3 mAb of the IgA class causes hardly any cytokine release and less side-effects as compared with its IgG2a switch variant. Provided T3.A is sufficiently immunosuppressive, it is superior to OKT3.

2519

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramowicz D., Pradier O., Marchant A., Florquin S., De Pauw L., Vereerstraeten P., Kinnaert P., Vanherweghem J. L., Goldman M. Induction of thromboses within renal grafts by high-dose prophylactic OKT3. Lancet. 1992 Mar 28;339(8796):777–778. doi: 10.1016/0140-6736(92)91897-h. [DOI] [PubMed] [Google Scholar]
  2. Abramowicz D., Schandene L., Goldman M., Crusiaux A., Vereerstraeten P., De Pauw L., Wybran J., Kinnaert P., Dupont E., Toussaint C. Release of tumor necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation. 1989 Apr;47(4):606–608. doi: 10.1097/00007890-198904000-00008. [DOI] [PubMed] [Google Scholar]
  3. Alegre M. L., Vandenabeele P., Depierreux M., Florquin S., Deschodt-Lanckman M., Flamand V., Moser M., Leo O., Urbain J., Fiers W. Cytokine release syndrome induced by the 145-2C11 anti-CD3 monoclonal antibody in mice: prevention by high doses of methylprednisolone. J Immunol. 1991 Feb 15;146(4):1184–1191. [PubMed] [Google Scholar]
  4. Bloemena E., ten Berge I. J., Surachno J., Wilmink J. M. Kinetics of interleukin 6 during OKT3 treatment in renal allograft recipients. Transplantation. 1990 Aug;50(2):330–331. [PubMed] [Google Scholar]
  5. Boot J. H., Geerts M. E., De Groot E. R., Aarden L. A. Murine monoclonal isotype switch variants. Detection with rat monoclonal antibodies in ELISA and isolation by sequential sublining. J Immunol Methods. 1988 Feb 10;106(2):195–202. doi: 10.1016/0022-1759(88)90197-4. [DOI] [PubMed] [Google Scholar]
  6. Charpentier B., Hiesse C., Lantz O., Ferran C., Stephens S., O'Shaugnessy D., Bodmer M., Benoit G., Bach J. F., Chatenoud L. Evidence that antihuman tumor necrosis factor monoclonal antibody prevents OKT3-induced acute syndrome. Transplantation. 1992 Dec;54(6):997–1002. doi: 10.1097/00007890-199212000-00011. [DOI] [PubMed] [Google Scholar]
  7. Chatenoud L., Baudrihaye M. F., Chkoff N., Kreis H., Goldstein G., Bach J. F. Restriction of the human in vivo immune response against the mouse monoclonal antibody OKT3. J Immunol. 1986 Aug 1;137(3):830–838. [PubMed] [Google Scholar]
  8. Chatenoud L., Baudrihaye M. F., Kreis H., Goldstein G., Schindler J., Bach J. F. Human in vivo antigenic modulation induced by the anti-T cell OKT3 monoclonal antibody. Eur J Immunol. 1982 Nov;12(11):979–982. doi: 10.1002/eji.1830121116. [DOI] [PubMed] [Google Scholar]
  9. Chatenoud L., Ferran C., Legendre C., Thouard I., Merite S., Reuter A., Gevaert Y., Kreis H., Franchimont P., Bach J. F. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation. 1990 Apr;49(4):697–702. doi: 10.1097/00007890-199004000-00009. [DOI] [PubMed] [Google Scholar]
  10. Chatenoud L., Ferran C., Reuter A., Legendre C., Gevaert Y., Kreis H., Franchimont P., Bach J. F. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-gamma [corrected]. N Engl J Med. 1989 May 25;320(21):1420–1421. doi: 10.1056/NEJM198905253202117. [DOI] [PubMed] [Google Scholar]
  11. Chatenoud L., Legendre C., Ferran C., Bach J. F., Kreis H. Corticosteroid inhibition of the OKT3-induced cytokine-related syndrome--dosage and kinetics prerequisites. Transplantation. 1991 Feb;51(2):334–338. doi: 10.1097/00007890-199102000-00012. [DOI] [PubMed] [Google Scholar]
  12. Debets J. M., Van der Linden C. J., Dieteren I. E., Leeuwenberg J. F., Buurman W. A. Fc-receptor cross-linking induces rapid secretion of tumor necrosis factor (cachectin) by human peripheral blood monocytes. J Immunol. 1988 Aug 15;141(4):1197–1201. [PubMed] [Google Scholar]
  13. Ferran C., Dy M., Merite S., Sheehan K., Schreiber R., Leboulenger F., Landais P., Bluestone J., Bach J. F., Chatenoud L. Reduction of morbidity and cytokine release in anti-CD3 MoAb-treated mice by corticosteroids. Transplantation. 1990 Oct;50(4):642–648. doi: 10.1097/00007890-199010000-00023. [DOI] [PubMed] [Google Scholar]
  14. Ferran C., Sheehan K., Dy M., Schreiber R., Merite S., Landais P., Noel L. H., Grau G., Bluestone J., Bach J. F. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur J Immunol. 1990 Mar;20(3):509–515. doi: 10.1002/eji.1830200308. [DOI] [PubMed] [Google Scholar]
  15. Ferran C., Sheehan K., Schreiber R., Bach J. F., Chatenoud L. Anti-TNF abrogates the cytokine-related anti-CD3 induced syndrome. Transplant Proc. 1991 Feb;23(1 Pt 1):849–850. [PubMed] [Google Scholar]
  16. Frenken L. A., Koene R. A., Tax W. J. The role of antibody isotype in IFN-gamma and IL-2 production during anti-CD3-induced T cell proliferation. Transplantation. 1991 Apr;51(4):881–887. doi: 10.1097/00007890-199104000-00028. [DOI] [PubMed] [Google Scholar]
  17. Gaston R. S., Deierhoi M. H., Patterson T., Prasthofer E., Julian B. A., Barber W. H., Laskow D. A., Diethelm A. G., Curtis J. J. OKT3 first-dose reaction: association with T cell subsets and cytokine release. Kidney Int. 1991 Jan;39(1):141–148. doi: 10.1038/ki.1991.18. [DOI] [PubMed] [Google Scholar]
  18. Gebel H. M., Lebeck L. K., Jensik S. C., Webster K., Bray R. A. T cells from patients successfully treated with OKT3 do not react with the T-cell receptor antibody. Hum Immunol. 1989 Oct;26(2):123–129. doi: 10.1016/0198-8859(89)90097-9. [DOI] [PubMed] [Google Scholar]
  19. Gebel H. M., Lebeck L. L., Jensik S. C., Landay A. L., Bray R. A. Discordant expression of CD3 and T-cell receptor antigens on lymphocytes from patients treated with OKT3. Transplant Proc. 1989 Feb;21(1 Pt 2):1745–1746. [PubMed] [Google Scholar]
  20. Goldman M., Abramowicz D., De Pauw L., Alegre M. L., Widera I., Vereerstraeten P., Kinnaert OKT3-induced cytokine release attenuation by high-dose methylprednisolone. Lancet. 1989 Sep 30;2(8666):802–803. doi: 10.1016/s0140-6736(89)90864-7. [DOI] [PubMed] [Google Scholar]
  21. Hack C. E., Paardekooper J., Eerenberg A. J., Navis G. O., Nijsten M. W., Thijs L. G., Nuijens J. H. A modified competitive inhibition radioimmunoassay for the detection of C3a. Use of 125I-C3 instead of 125I-C3a. J Immunol Methods. 1988 Apr 6;108(1-2):77–84. doi: 10.1016/0022-1759(88)90405-x. [DOI] [PubMed] [Google Scholar]
  22. Helle M., Boeije L., de Groot E., de Vos A., Aarden L. Sensitive ELISA for interleukin-6. Detection of IL-6 in biological fluids: synovial fluids and sera. J Immunol Methods. 1991 Apr 8;138(1):47–56. doi: 10.1016/0022-1759(91)90063-l. [DOI] [PubMed] [Google Scholar]
  23. Hirsch R., Bluestone J. A., DeNenno L., Gress R. E. Anti-CD3 F(ab')2 fragments are immunosuppressive in vivo without evoking either the strong humoral response or morbidity associated with whole mAb. Transplantation. 1990 Jun;49(6):1117–1123. doi: 10.1097/00007890-199006000-00018. [DOI] [PubMed] [Google Scholar]
  24. Hirsch R., Gress R. E., Pluznik D. H., Eckhaus M., Bluestone J. A. Effects of in vivo administration of anti-CD3 monoclonal antibody on T cell function in mice. II. In vivo activation of T cells. J Immunol. 1989 Feb 1;142(3):737–743. [PubMed] [Google Scholar]
  25. Hoffman T., Tripathi A. K., Lee Y. L., Bonvini E., Golding B. Inflammatory mediator release from human monocytes via immobilized Fc receptors. Its potential role in adverse reactions to systemic monoclonal antibody therapy. Transplantation. 1992 Aug;54(2):343–346. doi: 10.1097/00007890-199208000-00027. [DOI] [PubMed] [Google Scholar]
  26. Koivuranta-Vaara P., Banda D., Goldstein I. M. Bacterial-lipopolysaccharide-induced release of lactoferrin from human polymorphonuclear leukocytes: role of monocyte-derived tumor necrosis factor alpha. Infect Immun. 1987 Dec;55(12):2956–2961. doi: 10.1128/iai.55.12.2956-2961.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Levi M., de Boer J. P., Roem D., ten Cate J. W., Hack C. E. Plasminogen activation in vivo upon intravenous infusion of DDAVP. Quantitative assessment of plasmin-alpha 2-antiplasmin complex with a novel monoclonal antibody based radioimmunoassay. Thromb Haemost. 1992 Jan 23;67(1):111–116. [PubMed] [Google Scholar]
  28. Nuijens J. H., Abbink J. J., Wachtfogel Y. T., Colman R. W., Eerenberg A. J., Dors D., Kamp A. J., Strack van Schijndel R. J., Thijs L. G., Hack C. E. Plasma elastase alpha 1-antitrypsin and lactoferrin in sepsis: evidence for neutrophils as mediators in fatal sepsis. J Lab Clin Med. 1992 Feb;119(2):159–168. [PubMed] [Google Scholar]
  29. Palacios R. Mechanisms by which accessory cells contribute in growth of resting T lymphocytes initiated by OKT3 antibody. Eur J Immunol. 1985 Jul;15(7):645–651. doi: 10.1002/eji.1830150702. [DOI] [PubMed] [Google Scholar]
  30. Parleviet K. J., Jonker M., ten Berge R. J., van Lier R. A., Wilmink J. M., Strengers P. F., Aarden L. A., Schellekens P. T. Anti-CD3 murine monoclonal isotype switch variants tested for toxicity and immunologic monitoring in four chimpanzees. Transplantation. 1990 Nov;50(5):889–892. [PubMed] [Google Scholar]
  31. Parlevliet K. J., Schellekens P. T. Monoclonal antibodies in renal transplantation: a review. Transpl Int. 1992 Sep;5(4):234–246. doi: 10.1007/BF00336077. [DOI] [PubMed] [Google Scholar]
  32. Raasveld M. H., Bemelman F. J., Schellekens P. T., van Diepen F. N., van Dongen A., van Royen E. A., Hack C. E., ten Berge I. J. Complement activation during OKT3 treatment: a possible explanation for respiratory side effects. Kidney Int. 1993 May;43(5):1140–1149. doi: 10.1038/ki.1993.160. [DOI] [PubMed] [Google Scholar]
  33. Raasveld M. H., Hack C. E., ten Berge I. J. Activation of coagulation and fibrinolysis following OKT3 administration to renal transplant recipients: association with distinct mediators. Thromb Haemost. 1992 Sep 7;68(3):264–267. [PubMed] [Google Scholar]
  34. Raasveld M. H., Surachno S., Hack C. E., ten Berge R. J. Thromboembolic complications and dose of monoclonal OKT3 antibody. Lancet. 1992 May 30;339(8805):1363–1364. doi: 10.1016/0140-6736(92)92018-b. [DOI] [PubMed] [Google Scholar]
  35. Richter J., Andersson T., Olsson I. Effect of tumor necrosis factor and granulocyte/macrophage colony-stimulating factor on neutrophil degranulation. J Immunol. 1989 May 1;142(9):3199–3205. [PubMed] [Google Scholar]
  36. Roosnek E. E., Van Lier R. A., Aarden L. A. Two monoclonal anti-CD3 antibodies can induce different events in human T lymphocyte activation. Eur J Immunol. 1987 Oct;17(10):1507–1510. doi: 10.1002/eji.1830171019. [DOI] [PubMed] [Google Scholar]
  37. Tax W. J., Hermes F. F., Willems R. W., Capel P. J., Koene R. A. Fc receptors for mouse IgG1 on human monocytes: polymorphism and role in antibody-induced T cell proliferation. J Immunol. 1984 Sep;133(3):1185–1189. [PubMed] [Google Scholar]
  38. Thistlethwaite J. R., Jr, Stuart J. K., Mayes J. T., Gaber A. O., Woodle S., Buckingham M. R., Stuart F. P. Complications and monitoring of OKT3 therapy. Am J Kidney Dis. 1988 Feb;11(2):112–119. doi: 10.1016/s0272-6386(88)80192-6. [DOI] [PubMed] [Google Scholar]
  39. Todd P. A., Brogden R. N. Muromonab CD3. A review of its pharmacology and therapeutic potential. Drugs. 1989 Jun;37(6):871–899. doi: 10.2165/00003495-198937060-00004. [DOI] [PubMed] [Google Scholar]
  40. Van Lier R. A., Boot J. H., De Groot E. R., Aarden L. A. Induction of T cell proliferation with anti-CD3 switch-variant monoclonal antibodies: effects of heavy chain isotype in monocyte-dependent systems. Eur J Immunol. 1987 Nov;17(11):1599–1604. doi: 10.1002/eji.1830171112. [DOI] [PubMed] [Google Scholar]
  41. Vigeral P., Chkoff N., Chatenoud L., Campos H., Lacombe M., Droz D., Goldstein G., Bach J. F., Kreis H. Prophylactic use of OKT3 monoclonal antibody in cadaver kidney recipients. Utilization of OKT3 as the sole immunosuppressive agent. Transplantation. 1986 Jun;41(6):730–733. doi: 10.1097/00007890-198606000-00013. [DOI] [PubMed] [Google Scholar]
  42. Wolbink G. J., Bollen J., Baars J. W., ten Berge R. J., Swaak A. J., Paardekooper J., Hack C. E. Application of a monoclonal antibody against a neoepitope on activated C4 in an ELISA for the quantification of complement activation via the classical pathway. J Immunol Methods. 1993 Jul 6;163(1):67–76. doi: 10.1016/0022-1759(93)90240-8. [DOI] [PubMed] [Google Scholar]
  43. Woodle E. S., Thistlethwaite J. R., Ghobrial I. A., Jolliffe L. K., Stuart F. P., Bluestone J. A. OKT3 F(ab')2 fragments--retention of the immunosuppressive properties of whole antibody with marked reduction in T cell activation and lymphokine release. Transplantation. 1991 Aug;52(2):354–360. doi: 10.1097/00007890-199108000-00033. [DOI] [PubMed] [Google Scholar]
  44. van der Poll T., Büller H. R., ten Cate H., Wortel C. H., Bauer K. A., van Deventer S. J., Hack C. E., Sauerwein H. P., Rosenberg R. D., ten Cate J. W. Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J Med. 1990 Jun 7;322(23):1622–1627. doi: 10.1056/NEJM199006073222302. [DOI] [PubMed] [Google Scholar]
  45. van der Poll T., Levi M., Büller H. R., van Deventer S. J., de Boer J. P., Hack C. E., ten Cate J. W. Fibrinolytic response to tumor necrosis factor in healthy subjects. J Exp Med. 1991 Sep 1;174(3):729–732. doi: 10.1084/jem.174.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. van der Poll T., van Deventer S. J., Hack C. E., Wolbink G. J., Aarden L. A., Büller H. R., ten Cate J. W. Effects on leukocytes after injection of tumor necrosis factor into healthy humans. Blood. 1992 Feb 1;79(3):693–698. [PubMed] [Google Scholar]