Membranous intermediates in endocytosis are labile, as shown in a temperature-sensitive mutant (original) (raw)

Abstract

Membranous tubules, especially prevalent in mammalian absorptive epithelia and insect oocytes, are one of the pleomorphic endocytic compartments that have a role in receptor-mediated endocytosis. To determine whether these tubules are evanescent, and to investigate their temporal relationships with other endocytic intermediates, we studied these tubules during oocyte vitellogenesis in the temperature-sensitive mutant Drosophila melanogaster, shibiretsl. Raising the temperature of shibire oocytes for 1 min from 19 degrees C to 29 degrees C caused a loss of these membranous tubules. The percentage of membrane in tubules decreased from 36% at 19 degrees C to 1.5% after 5 min at 29 degrees C. Concomitantly, the amount of surface membrane increased from 64% at 19 degrees C to 98% after 5 min at 29 degrees C, causing surface membrane invaginations to extend deeper into the cortex. At 29 degrees C the cytoplasmic face of the plasma membrane was studded with coated pits, and the extracellular face was coated with electron-dense material. Return from 29 degrees C to either 19 degrees C or 26 degrees C for 1-2 min produced a rapid reappearance of tubules containing extracellular horseradish peroxidase in the cortex. These data suggest that tubular intermediates are evanescent structures, and that temperature shock (i) rapidly blocks their formation from the plasma membrane, (ii) causes existing tubules to rapidly recycle to the plasma membrane, and (iii) is rapidly reversed, as newly formed tubules derive their membrane and content from the cell surface.

4968

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D., Gluck S., Hartwig J. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J Cell Biol. 1987 Oct;105(4):1637–1648. doi: 10.1083/jcb.105.4.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown M. S., Anderson R. G., Goldstein J. L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
  3. Christensen E. I. Rapid membrane recycling in renal proximal tubule cells. Eur J Cell Biol. 1982 Nov;29(1):43–49. [PubMed] [Google Scholar]
  4. DiMario P. J., Mahowald A. P. The effects of pH and weak bases on the in vitro endocytosis of vitellogenin by oocytes of Drosophila melanogaster. Cell Tissue Res. 1986;246(1):103–108. doi: 10.1007/BF00219005. [DOI] [PubMed] [Google Scholar]
  5. Geuze H. J., Slot J. W., Strous G. J., Lodish H. F., Schwartz A. L. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell. 1983 Jan;32(1):277–287. doi: 10.1016/0092-8674(83)90518-4. [DOI] [PubMed] [Google Scholar]
  6. Geuze H. J., Slot J. W., Strous G. J., Peppard J., von Figura K., Hasilik A., Schwartz A. L. Intracellular receptor sorting during endocytosis: comparative immunoelectron microscopy of multiple receptors in rat liver. Cell. 1984 May;37(1):195–204. doi: 10.1016/0092-8674(84)90315-5. [DOI] [PubMed] [Google Scholar]
  7. Giorgi F., Jacob J. Recent findings on oogenesis of Drosophila melanogaster. I. Ultrastructural observations on the developing ooplasm. J Embryol Exp Morphol. 1977 Apr;38:115–124. [PubMed] [Google Scholar]
  8. Giorgi F., Jacob J. Recent findings on oogenesis of Drosophila melanogaster. II. Further evidence on the origin of yolk platelets. J Embryol Exp Morphol. 1977 Apr;38:125–137. [PubMed] [Google Scholar]
  9. Gonnella P. A., Neutra M. R. Membrane-bound and fluid-phase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ileum. J Cell Biol. 1984 Sep;99(3):909–917. doi: 10.1083/jcb.99.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grigliatti T. A., Hall L., Rosenbluth R., Suzuki D. T. Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Mol Gen Genet. 1973 Jan 24;120(2):107–114. doi: 10.1007/BF00267238. [DOI] [PubMed] [Google Scholar]
  11. Hatae T., Fujita M., Sagara H. Helical structure in the apical tubules of several absorbing epithelia. Kidney proximal tubule, visceral yolk sac and ductuli efferentes. Cell Tissue Res. 1986;244(1):39–46. doi: 10.1007/BF00218379. [DOI] [PubMed] [Google Scholar]
  12. Jollie W. P., Triche T. J. Ruthenium labeling of micropinocytotic activity in the rat visceral yolk-sac placenta. J Ultrastruct Res. 1971 Jun;35(5):541–553. doi: 10.1016/s0022-5320(71)80010-2. [DOI] [PubMed] [Google Scholar]
  13. Knutton S., Limbrick A. R., Robertson J. D. Regular structures in membranes. I. Membranes in the endocytic complex of ileal epithelial cells. J Cell Biol. 1974 Sep;62(3):679–694. doi: 10.1083/jcb.62.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kosaka T., Ikeda K. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J Neurobiol. 1983 May;14(3):207–225. doi: 10.1002/neu.480140305. [DOI] [PubMed] [Google Scholar]
  15. Kosaka T., Ikeda K. Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1. J Cell Biol. 1983 Aug;97(2):499–507. doi: 10.1083/jcb.97.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kugler P., Miki A. Study on membrane recycling in the rat visceral yolk-sac endoderm using concanavalin-A conjugates. Histochemistry. 1985;83(4):359–367. doi: 10.1007/BF00684383. [DOI] [PubMed] [Google Scholar]
  17. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mahowald A. P. Ultrastructural observations on oogenesis in Drosophila. J Morphol. 1972 May;137(1):29–48. doi: 10.1002/jmor.1051370103. [DOI] [PubMed] [Google Scholar]
  19. Poodry C. A., Edgar L. Reversible alteration in the neuromuscular junctions of Drosophila melanogaster bearing a temperature-sensitive mutation, shibire. J Cell Biol. 1979 Jun;81(3):520–527. doi: 10.1083/jcb.81.3.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Poodry C. A., Hall L., Suzuki D. T. Developmental properties of Shibire: a pleiotropic mutation affecting larval and adult locomotion and development. Dev Biol. 1973 Jun;32(2):373–386. doi: 10.1016/0012-1606(73)90248-0. [DOI] [PubMed] [Google Scholar]
  21. Robb J. A. Maintenance of imaginal discs of Drosophila melanogaster in chemically defined media. J Cell Biol. 1969 Jun;41(3):876–885. doi: 10.1083/jcb.41.3.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rodewald R. Intestinal transport of antibodies in the newborn rat. J Cell Biol. 1973 Jul;58(1):189–211. doi: 10.1083/jcb.58.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Siminoski K., Gonnella P., Bernanke J., Owen L., Neutra M., Murphy R. A. Uptake and transepithelial transport of nerve growth factor in suckling rat ileum. J Cell Biol. 1986 Nov;103(5):1979–1990. doi: 10.1083/jcb.103.5.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  25. Tycko B., Maxfield F. R. Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin. Cell. 1982 Mar;28(3):643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  26. Wilson J. M., Whitney J. A., Neutra M. R. Identification of an endosomal antigen specific to absorptive cells of suckling rat ileum. J Cell Biol. 1987 Aug;105(2):691–703. doi: 10.1083/jcb.105.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van Renswoude J., Bridges K. R., Harford J. B., Klausner R. D. Receptor-mediated endocytosis of transferrin and the uptake of fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6186–6190. doi: 10.1073/pnas.79.20.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]