Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation (original) (raw)

Abstract

Whether bone marrow stromal cells of donors contribute physiologically to hematopoietic stem cell reconstitution after marrow transplantation is unknown. To determine the transplantability of nonhematopoietic marrow stromal cells, stable clonal stromal cell line (GB1/6) expressing the a isoenzyme of glucose-6-phosphate isomerase (Glu6PI-a, D-glucose-6-phosphate ketol-isomerase; EC 5.3.1.9) was derived from murine long-term bone marrow cultures and made resistant to neomycin analogue G418 by retroviral gene transfer. GB1/6 cells were fibronectin+, laminin+, and collagen-type IV+ and collagen type I-; these GB1/6 cells supported in vitro growth of hematopoietic stem cells forming colony-forming units of spleen cells (CFU-S) and of granulocytes, erythrocytes, and macrophage/megakarocytes (CFU-GEMM) in the absence of detectable growth factors interleukin 3 (multi-colony-stimulating factor), granulocyte/macrophage colony-stimulating factor, granulocyte-stimulating factor, or their poly(A)+ mRNAs. The GB1/6 cells produced macrophage colony-stimulating factor constitutively. Recipient C57BL/6J (glucose-6-phosphate isomerase b) mice that received 3-Gy total-body irradiation and 13 Gy to the right hind limb were injected i.v. with GB1/6 cells. Engrafted mice demonstrated donor-originating Glu6PI-a+ stromal cells in marrow sinuses in situ 2 mo after transplantation and a significantly enhanced hematopoietic recovery compared with control irradiated nontransplanted mice. Continuous (over numerous passages) marrow cultures derived from transplanted mice demonstrated G418-resistant, Glu6PI-a+ stromal colony-forming cells and greater cumulative production of multipotential stem cells of recipient origin compared with cultures established from irradiated, nontransplanted control mice. These data are evidence for physiological function in vivo of a transplanted bone marrow stromal cell line.

7681

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anklesaria P., Klassen V., Sakakeeny M. A., FitzGerald T. J., Harrison D., Rybak M. E., Greenberger J. S. Biological characterization of cloned permanent stromal cell lines from anemic Sl/Sld mice and +/+ littermates. Exp Hematol. 1987 Jul;15(6):636–644. [PubMed] [Google Scholar]
  2. Anklesaria P., Sakakeeny M. A., Klassen V., Rothstein L., FitzGerald T. J., Appel M., Greenberger J. S., Holland C. A. Expression of a selectable gene transferred by a retroviral vector to hematopoietic stem cells and stromal cells in murine continuous bone marrow cultures. Exp Hematol. 1987 Feb;15(2):195–202. [PubMed] [Google Scholar]
  3. Auron P. E., Webb A. C., Rosenwasser L. J., Mucci S. F., Rich A., Wolff S. M., Dinarello C. A. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7907–7911. doi: 10.1073/pnas.81.24.7907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brecher G., Tjio J. H., Haley J. E., Narla J., Beal S. L. Transplantation of murine bone marrow without prior host irradiation. Blood Cells. 1979 Jun 15;5(2):237–246. [PubMed] [Google Scholar]
  5. Broxmeyer H. E., Williams D. E., Cooper S., Waheed A., Shadduck R. K. The influence in vivo of murine colony-stimulating factor-1 on myeloid progenitor cells in mice recovering from sublethal dosages of cyclophosphamide. Blood. 1987 Mar;69(3):913–918. [PubMed] [Google Scholar]
  6. Chamberlin W., Barone J., Kedo A., Fried W. Lack of recovery of murine hematopoietic stromal cells after irradiation-induced damage. Blood. 1974 Sep;44(3):385–392. [PubMed] [Google Scholar]
  7. Champlin R. E., Feig S. A., Gale R. P. Case problems in bone marrow transplantation. I. Graft failure in aplastic anemia: its biology and treatment. Exp Hematol. 1984 Oct;12(9):728–733. [PubMed] [Google Scholar]
  8. Charles D., Lee C. Y. Biochemical characterization of phosphoglucose isomerase and genetic variants from mouse and Drosophila melanogaster. Mol Cell Biochem. 1980 Jan 16;29(1):11–21. doi: 10.1007/BF00230952. [DOI] [PubMed] [Google Scholar]
  9. Chertkov J. L., Drize N. J., Gurevitch O. A., Samoylova R. S. Origin of hemopoietic stromal progenitor cells in chimeras. Exp Hematol. 1985 Dec;13(11):1217–1222. [PubMed] [Google Scholar]
  10. Fung M. C., Hapel A. J., Ymer S., Cohen D. R., Johnson R. M., Campbell H. D., Young I. G. Molecular cloning of cDNA for murine interleukin-3. Nature. 1984 Jan 19;307(5948):233–237. doi: 10.1038/307233a0. [DOI] [PubMed] [Google Scholar]
  11. Golde D. W., Hocking W. G., Quan S. G., Sparkes R. S., Gale R. P. Origin of human bone marrow fibroblasts. Br J Haematol. 1980 Feb;44(2):183–187. doi: 10.1111/j.1365-2141.1980.tb01200.x. [DOI] [PubMed] [Google Scholar]
  12. Gough N. M., Gough J., Metcalf D., Kelso A., Grail D., Nicola N. A., Burgess A. W., Dunn A. R. Molecular cloning of cDNA encoding a murine haematopoietic growth regulator, granulocyte-macrophage colony stimulating factor. 1984 Jun 28-Jul 4Nature. 309(5971):763–767. doi: 10.1038/309763a0. [DOI] [PubMed] [Google Scholar]
  13. Greenberger J. S., Eckner R. J., Otten J. A., Tennant R. W. In vitro quantitation of lethal and physiologic effects of total body irradiation on stromal and hematopoietic stem cells in continuous bone marrow cultures from Rf mice. Int J Radiat Oncol Biol Phys. 1982 Jul;8(7):1155–1165. doi: 10.1016/0360-3016(82)90063-3. [DOI] [PubMed] [Google Scholar]
  14. Greenberger J. S. Sensitivity of corticosteroid-dependent insulin-resistant lipogenesis in marrow preadipocytes of obese-diabetic (db/db) mice. Nature. 1978 Oct 26;275(5682):752–754. doi: 10.1038/275752a0. [DOI] [PubMed] [Google Scholar]
  15. Humphries R. K., Eaves A. C., Eaves C. J. Self-renewal of hemopoietic stem cells during mixed colony formation in vitro. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3629–3633. doi: 10.1073/pnas.78.6.3629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Juneja H. S., Gardner F. H., Minguell J. J., Helmer R. E., 3rd Abnormal marrow fibroblasts in aplastic anemia. Exp Hematol. 1984 May;12(4):221–230. [PubMed] [Google Scholar]
  17. Kawasaki E. S., Ladner M. B., Wang A. M., Van Arsdell J., Warren M. K., Coyne M. Y., Schweickart V. L., Lee M. T., Wilson K. J., Boosman A. Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science. 1985 Oct 18;230(4723):291–296. doi: 10.1126/science.2996129. [DOI] [PubMed] [Google Scholar]
  18. Keating A., Singer J. W., Killen P. D., Striker G. E., Salo A. C., Sanders J., Thomas E. D., Thorning D., Fialkow P. J. Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature. 1982 Jul 15;298(5871):280–283. doi: 10.1038/298280a0. [DOI] [PubMed] [Google Scholar]
  19. Lennon J. E., Micklem H. S. Stromal cells in long-term murine bone marrow culture: FACS studies and origin of stromal cells in radiation chimeras. Exp Hematol. 1986 May;14(4):287–292. [PubMed] [Google Scholar]
  20. Magli M. C., Iscove N. N., Odartchenko N. Transient nature of early haematopoietic spleen colonies. Nature. 1982 Feb 11;295(5849):527–529. doi: 10.1038/295527a0. [DOI] [PubMed] [Google Scholar]
  21. Marshall M. J., Nisbet N. W., Evans S. Donor origin of the in vitro hematopoietic microenvironment after marrow transplantation in mice. Experientia. 1984 Apr 15;40(4):385–386. doi: 10.1007/BF01952566. [DOI] [PubMed] [Google Scholar]
  22. Piersma A. H., Ploemacher R. E., Brockbank K. G. Transplantation of bone marrow fibroblastoid stromal cells in mice via the intravenous route. Br J Haematol. 1983 Jun;54(2):285–290. doi: 10.1111/j.1365-2141.1983.tb02097.x. [DOI] [PubMed] [Google Scholar]
  23. Ramsay N., LeBien T., Nesbit M., McGlave P., Weisdorf D., Kenyon P., Hurd D., Goldman A., Kim T., Kersey J. Autologous bone marrow transplantation for patients with acute lymphoblastic leukemia in second or subsequent remission: results of bone marrow treated with monoclonal antibodies BA-1, BA-2, and BA-3 plus complement. Blood. 1985 Sep;66(3):508–513. [PubMed] [Google Scholar]
  24. Rennick D., Yang G., Gemmell L., Lee F. Control of hemopoiesis by a bone marrow stromal cell clone: lipopolysaccharide- and interleukin-1-inducible production of colony-stimulating factors. Blood. 1987 Feb;69(2):682–691. [PubMed] [Google Scholar]
  25. Takahashi M., Keating A., Singer J. W. A functional defect in irradiated adherent layers from chronic myelogenous leukemia long-term marrow cultures. Exp Hematol. 1985 Oct;13(9):926–931. [PubMed] [Google Scholar]
  26. Tsuchiya M., Asano S., Kaziro Y., Nagata S. Isolation and characterization of the cDNA for murine granulocyte colony-stimulating factor. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7633–7637. doi: 10.1073/pnas.83.20.7633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Werts E. D., Gibson D. P., Knapp S. A., DeGowin R. L. Stromal cell migration precedes hemopoietic repopulation of the bone marrow after irradiation. Radiat Res. 1980 Jan;81(1):20–30. [PubMed] [Google Scholar]
  28. Zipori D., Duksin D., Tamir M., Argaman A., Toledo J., Malik Z. Cultured mouse marrow stromal cell lines. II. Distinct subtypes differing in morphology, collagen types, myelopoietic factors, and leukemic cell growth modulating activities. J Cell Physiol. 1985 Jan;122(1):81–90. doi: 10.1002/jcp.1041220113. [DOI] [PubMed] [Google Scholar]