Basal Structure and Attachment of Flagella in Cells of Proteus vulgaris (original) (raw)

Abstract

Abram, Dinah (Purdue University, Lafayette, Ind.), Henry Koffler, and A. E. Vatter. Basal structure and attachment of flagella in cells of Proteus vulgaris. J. Bacteriol. **90:**1337–1354. 1965.—The attachment of flagella to cells of Proteus vulgaris was studied electron microscopically with negatively stained and shadow-cast preparations of ghosts from standard cultures and from special cultures that produced “long forms.” The flagellum, the basal portion of which is hooked, arises within the cell from a nearly spherical structure, 110 to 140 A in diameter. This structure appears to be associated with the cytoplasmic membrane; it may be a part of the membrane or a separate entity that lies just beneath the membrane. Flagella associated with cell walls free from cytoplasmic membrane frequently have larger bodies, 200 to 700 A in diameter, associated with their base. These structures probably consist at least partly of fragments of the cytoplasmic membrane, a portion of which folds around a smaller structure. Flagella in various stages of development were observed in long forms of P. vulgaris cells grown at low temperature. The basal structure of these flagella was similar to that of the long or “mature” flagella. Strands connecting the basal structures were observed in ghosts of long forms; these strands appear to be derived from the cytoplasmic membrane. Flagella were found to be attached to fragments of cell wall and to cytoplasmic membrane in a similar manner as they are attached to ghosts. In isolates of flagella that have been separated from the cells mechanically, the organelles often terminate in hooks which almost always appear naked, but have a different fine structure than the flagellum proper.

1337

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAM D. ELECTRON MICROSCOPE OBSERVATIONS ON INTACT CELLS, PROTOPLASTS, AND THE CYTOPLASMIC MEMBRANE OF BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1965 Mar;89:855–873. doi: 10.1128/jb.89.3.855-873.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ABRAM D., KOFFLER H. IN VITRO FORMATION OF FLAGELLA-LIKE FILAMENTS AND OTHER STRUCTURES FROM FLAGELLIN. J Mol Biol. 1964 Jul;9:168–185. doi: 10.1016/s0022-2836(64)80098-x. [DOI] [PubMed] [Google Scholar]
  3. ADA G. L., NOSSAL G. J., PYE J., ABBOT A. BEHAVIOUR OF ACTIVE BACTERIAL ANTIGENS DURING THE INDUCTION OF THE IMMUNE RESPONSE. I. PROPERTIES OF FLAGELLAR ANTIGENS FROM SALMONELLA. Nature. 1963 Sep 28;199:1257–1259. doi: 10.1038/1991257a0. [DOI] [PubMed] [Google Scholar]
  4. ASAKURA S., EGUCHI G., IINO T. RECONSTITUTION OF BACTERIAL FLAGELLA IN VITRO. J Mol Biol. 1964 Oct;10:42–56. doi: 10.1016/s0022-2836(64)80026-7. [DOI] [PubMed] [Google Scholar]
  5. GLAUERT A. M., KERRIDGE D., HORNE R. W. THE FINE STRUCTURE AND MODE OF ATTACHMENT OF THE SHEATHED FLAGELLUM OF VIBRIO METCHNIKOVII. J Cell Biol. 1963 Aug;18:327–336. doi: 10.1083/jcb.18.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GRACE J. B. Some observations on the flagella and blepharoplasts of Spirillum and Vibrio spp. J Gen Microbiol. 1954 Apr;10(2):325–327. doi: 10.1099/00221287-10-2-325. [DOI] [PubMed] [Google Scholar]
  7. HOUWINK A. L. A macromolecular mono-layer in the cell wall of Spirillum spec. Biochim Biophys Acta. 1953 Mar;10(3):360–366. doi: 10.1016/0006-3002(53)90266-2. [DOI] [PubMed] [Google Scholar]
  8. HOUWINK A. L., van ITERSON W. Electron microscopical observations on bacterial cytology; a study on flagellation. Biochim Biophys Acta. 1950 Mar;5(1):10–44. doi: 10.1016/0006-3002(50)90144-2. [DOI] [PubMed] [Google Scholar]
  9. Johnson F. H., Zworykin N., Warren G. A Study of Luminous Bacterial Cells and Cytolysates with the Electron Microscope. J Bacteriol. 1943 Aug;46(2):167–185. doi: 10.1128/jb.46.2.167-185.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KERRIDGE D., HORNE R. W., GLAUERT A. M. Structural components of flagella from Salmonella typhimurium. J Mol Biol. 1962 Apr;4:227–238. doi: 10.1016/s0022-2836(62)80001-1. [DOI] [PubMed] [Google Scholar]
  11. LOWY J., MCDONOUGH M. W. STRUCTURE OF FILAMENTS PRODUCED BY RE-AGGREGATION OF SALMONELLA FLAGELLIN. Nature. 1964 Oct 10;204:125–127. doi: 10.1038/204125a0. [DOI] [PubMed] [Google Scholar]
  12. PEASE P. Some observations upon the development and mode of attachment of the flagella in Vibrio and Spirillum species. Exp Cell Res. 1956 Feb;10(1):234–237. doi: 10.1016/0014-4827(56)90092-1. [DOI] [PubMed] [Google Scholar]
  13. PIJPER A. Bacterial flagella and motility. Ergeb Mikrobiol Immunitatsforsch Exp Ther. 1957;30:37–95. doi: 10.1007/978-3-662-25832-3_2. [DOI] [PubMed] [Google Scholar]
  14. SALTON M. R. J., HORNE R. W. Studies of the bacterial cell wall. I. Electron microscopical observations on heated bacteria. Biochim Biophys Acta. 1951 May;7(1):19–42. doi: 10.1016/0006-3002(51)90003-0. [DOI] [PubMed] [Google Scholar]
  15. TAWARA J. Electron-microscopic study on the flagella of Vibrio comma. J Bacteriol. 1957 Jan;73(1):89–90. doi: 10.1128/jb.73.1.89-90.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TAWARA J. MANNER OF ATTACHMENT OF FLAGELLA IN VIBRIO COMMA. J Bacteriol. 1964 Aug;88:531–532. doi: 10.1128/jb.88.2.531-532.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. THORNLEY M. J., HORNE R. W. Electron microscope observations on the structure of fimbriae, with particular reference to Klebsiella strains, by the use of the negative staining technique. J Gen Microbiol. 1962 Apr;28:51–56. doi: 10.1099/00221287-28-1-51. [DOI] [PubMed] [Google Scholar]
  18. WEIBULL C. Characterization of the protoplasmic constituents of bacillus megaterium. J Bacteriol. 1953 Dec;66(6):696–702. doi: 10.1128/jb.66.6.696-702.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WEIBULL C. The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme. J Bacteriol. 1953 Dec;66(6):688–695. doi: 10.1128/jb.66.6.688-695.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WIAME J. M., STORCK R., VANDERWINKEL E. Biosynthèse induite d'arabokinase dans les protoplastes de Bacillus subtilis. Biochim Biophys Acta. 1955 Nov;18(3):353–357. doi: 10.1016/0006-3002(55)90097-4. [DOI] [PubMed] [Google Scholar]