Substrate proteins for calmodulin-sensitive and phospholipid-sensitive Ca2+-dependent protein kinases in heart, and inhibition of their phosphorylation by palmitoylcarnitine (original) (raw)

Abstract

At least two substrate proteins for phospholipid-sensitive Ca2+-dependent protein kinase and at least six substrates for calmodulin-sensitive Ca2+-dependent protein kinase were identified in the cytosol of the guinea pig heart. In the particulate subfractions enriched in nuclei, mitochondria, microsome, or plasma membrane, no substrates for the phospholipid-sensitive enzyme were demonstrated but at least four substrates for the calmodulin-sensitive enzyme were identified. The present studies suggest that phospholipid, acting independently of calmodulin, is likely to be involved in the regulation of Ca2+-dependent protein phosphorylation in the heart. Phosphorylation of endogenous substrates for the two enzyme systems was effectively inhibited by palmitoylcarnitine. When histone was used as exogenous substrate, the carnitine ester inhibited the cardiac phospholipid-sensitive Ca2+-dependent protein kinase but not the cardiac cyclic AMP-dependent and cyclic GMP-dependent protein kinases. It is suggested that inhibition of the Ca2+-dependent phosphorylation of cardiac proteins, regulated by either phospholipid or calmodulin, is probably related in part to the great increase in this fatty acid metabolic intermediate in the ischemic heart.

4813

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Cohen D. W., Gupte S., Johnson J. D., Wallick E. T., Wang T., Schwartz A. In vitro effects of palmitylcarnitine on cardiac plasma membrane Na,K-ATPase, and sarcoplasmic reticulum Ca2+-ATPase and Ca2+ transport. J Biol Chem. 1979 Dec 25;254(24):12404–12410. [PubMed] [Google Scholar]
  2. Charbonneau H., Cormier M. J. Purification of plant calmodulin by fluphenazine-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1979 Oct 12;90(3):1039–1047. doi: 10.1016/0006-291x(79)91931-4. [DOI] [PubMed] [Google Scholar]
  3. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  4. Chohan P., Cryer A. Lipoprotein lipase activity of rat cardiac muscle. The intracellular distribution of the enzyme between fractions prepared from cardiac muscle and cells isolated from the hearts of fed and starved animals. Biochem J. 1979 Jul 1;181(1):83–93. doi: 10.1042/bj1810083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen P., Burchell A., Foulkes J. G., Cohen P. T., Vanaman T. C., Nairn C. Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett. 1978 Aug 15;92(2):287–293. doi: 10.1016/0014-5793(78)80772-8. [DOI] [PubMed] [Google Scholar]
  6. Dabrowska R., Sherry J. M., Aromatorio D. K., Hartshorne D. J. Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochemistry. 1978 Jan 24;17(2):253–258. doi: 10.1021/bi00595a010. [DOI] [PubMed] [Google Scholar]
  7. DePaoli-Roach A. A., Roach P. J., Larner J. Rabbit skeletal muscle phosphorylase kinase. Comparison of glycogen synthase and phosphorylase as substrates. J Biol Chem. 1979 May 25;254(10):4212–4219. [PubMed] [Google Scholar]
  8. Feuvray D., Idell-Wenger J. A., Neely J. R. Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res. 1979 Mar;44(3):322–329. doi: 10.1161/01.res.44.3.322. [DOI] [PubMed] [Google Scholar]
  9. Harigaya S., Schwartz A. Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Membrane vesicles (relaxing system) and mitochondria. Circ Res. 1969 Dec;25(6):781–794. doi: 10.1161/01.res.25.6.781. [DOI] [PubMed] [Google Scholar]
  10. Hathaway D. R., Adelstein R. S. Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1653–1657. doi: 10.1073/pnas.76.4.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Higashinakagawa T., Muramatsu M., Sugano H. Isolation of nucleoli from rat liver in the presence of magnesium ions. Exp Cell Res. 1972 Mar;71(1):65–74. doi: 10.1016/0014-4827(72)90264-9. [DOI] [PubMed] [Google Scholar]
  12. Idell-Wenger J. A., Grotyohann L. W., Neely J. R. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem. 1978 Jun 25;253(12):4310–4318. [PubMed] [Google Scholar]
  13. Katoh N., Wise B. C., Wrenn R. W., Kuo J. F. Inhibition by adriamycin of calmodulin-sensitive and phospholipid-sensitive calcium-dependent phosphorylation of endogenous proteins from heart. Biochem J. 1981 Jul 15;198(1):199–205. doi: 10.1042/bj1980199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuo J. F., Andersson R. G., Wise B. C., Mackerlova L., Salomonsson I., Brackett N. L., Katoh N., Shoji M., Wrenn R. W. Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7039–7043. doi: 10.1073/pnas.77.12.7039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuo J. F., Kuo W. N., Shoji M., Davis C. W., Seery V. L., Donnelly T. E., Jr Purification and general properties of guanosine 3':5'-monophosphate-dependent protein kinase from guinea pig fetal lung. J Biol Chem. 1976 Mar 25;251(6):1759–1766. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Landt M., McDonald J. M. Calmodulin-activated protein kinase activity of adipocyte microsomes. Biochem Biophys Res Commun. 1980 Apr 14;93(3):881–888. doi: 10.1016/0006-291x(80)91158-4. [DOI] [PubMed] [Google Scholar]
  18. Payne M. E., Soderling T. R. Calmodulin-dependent glycogen synthase kinase. J Biol Chem. 1980 Sep 10;255(17):8054–8056. [PubMed] [Google Scholar]
  19. Schulman H., Greengard P. Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by "calcium-dependent regulator". Proc Natl Acad Sci U S A. 1978 Nov;75(11):5432–5436. doi: 10.1073/pnas.75.11.5432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schulman H., Greengard P. Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein. Nature. 1978 Feb 2;271(5644):478–479. doi: 10.1038/271478a0. [DOI] [PubMed] [Google Scholar]
  21. Shoji M., Patrick J. G., Davis C. W., Kuo J. F. Guanosine cyclic monophosphate-dependent protein kinase from foetal calf heart. Purification, general properties and catalytic subunit. Biochem J. 1977 Feb 1;161(2):213–221. doi: 10.1042/bj1610213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shug A. L., Thomsen J. H., Folts J. D., Bittar N., Klein M. I., Koke J. R., Huth P. J. Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys. 1978 Apr 15;187(1):25–33. doi: 10.1016/0003-9861(78)90003-6. [DOI] [PubMed] [Google Scholar]
  23. Tada M., Kirchberger M. A., Repke D. I., Katz A. M. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1974 Oct 10;249(19):6174–6180. [PubMed] [Google Scholar]
  24. Takai Y., Kishimoto A., Iwasa Y., Kawahara Y., Mori T., Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem. 1979 May 25;254(10):3692–3695. [PubMed] [Google Scholar]
  25. Teo T. S., Wang J. H. Mechanism of activation of a cyclic adenosine 3':5'-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+ binding protein. J Biol Chem. 1973 Sep 10;248(17):5950–5955. [PubMed] [Google Scholar]
  26. Walsh D. A., Clippinger M. S., Sivaramakrishnan S., McCullough T. E. Cyclic adenosine monophosphate dependent and independent phosphorylation of sarcolemma membrane proteins in perfused rat heart. Biochemistry. 1979 Mar 6;18(5):871–877. doi: 10.1021/bi00572a021. [DOI] [PubMed] [Google Scholar]
  27. Walsh D. A., Perkins J. P., Brosom C. O., Ho E. S., Kreb E. G. Catlysis of the phosphrylaseinase actition reaction. J Biol Chem. 1971 Apr 10;246(7):1968–1976. [PubMed] [Google Scholar]
  28. Walsh M. P., Vallet B., Autric F., Demaille J. G. Purification and characterization of bovine cardiac calmodulin-dependent myosin light chain kinase. J Biol Chem. 1979 Dec 10;254(23):12136–12144. [PubMed] [Google Scholar]
  29. Whitmer J. T., Idell-Wenger J. A., Rovetto M. J., Neely J. R. Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem. 1978 Jun 25;253(12):4305–4309. [PubMed] [Google Scholar]
  30. Wrenn R. W., Katoh N., Wise B. C., Kuo J. F. Stimulation by phosphatidylserine and calmodulin of calcium-dependent phosphorylation of endogenous proteins from cerebral cortex. J Biol Chem. 1980 Dec 25;255(24):12042–12046. [PubMed] [Google Scholar]
  31. Yagi K., Yazawa M., Kakiuchi S., Ohshima M., Uenishi K. Identification of an activator protein for myosin light chain kinase as the Ca2+-dependent modulator protein. J Biol Chem. 1978 Mar 10;253(5):1338–1340. [PubMed] [Google Scholar]
  32. Yamauchi T., Fujisawa H. Most of the Ca2+-dependent endogenous phosphorylation of rat brain cytosol proteins requires Ca2+-dependent regulation protein. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1172–1178. doi: 10.1016/0006-291x(79)91160-4. [DOI] [PubMed] [Google Scholar]