A program for prediction of protein secondary structure from nucleotide sequence data: application to histocompatibility antigens (original) (raw)
Abstract
A computer program is described which, given a nucleotide or an amino acid sequence, outputs protein secondary structure prediction curves as well as hydrophobicity and charged-residue profiles. The program allows for cumulative averaging of properties (secondary structure propensities, hydrophobicity and charge profiles) from several homologous primary structures, a novel concept shown to improve the predictive accuracy. The use of the program is demonstrated on a set of nucleotide and amino acid sequences from human and murine histocompatibility antigens of class I and II. The last extracellular domains of both class I and II antigens (alpha 3 of class I, alpha 2 and beta 2 of class II) and the beta 2-microglobulin domain are predicted to consist of seven anti-parallel beta-strands, in accord with previous claims of homology between these domains and the constant domains of immunoglobulin chains. The remaining extracellular domains are all proposed to form an anti-parallel, four-stranded beta-sheet with one of its faces being covered by alpha-helices and/or structureless segments ("open face sandwiches").
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auffray C., Korman A. J., Roux-Dosseto M., Bono R., Strominger J. L. cDNA clone for the heavy chain of the human B cell alloantigen DC1: strong sequence homology to the HLA-DR heavy chain. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6337–6341. doi: 10.1073/pnas.79.20.6337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benoist C. O., Mathis D. J., Kanter M. R., Williams V. E., 2nd, McDevitt H. O. The murine Ia alpha chains, E alpha and A alpha, show a surprising degree of sequence homology. Proc Natl Acad Sci U S A. 1983 Jan;80(2):534–538. doi: 10.1073/pnas.80.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess A. W., Scheraga H. A. Assessment of some problems associated with prediction of the three-dimensional structure of a protein from its amino-acid sequence. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1221–1225. doi: 10.1073/pnas.72.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen B. L., Poljak R. J. Amino acid sequence of the (lambda) light chain of a human myeloma immunoglobulin (IgG New). Biochemistry. 1974 Mar 12;13(6):1295–1302. doi: 10.1021/bi00703a037. [DOI] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
- Cohen F. E., Sternberg M. J., Taylor W. R. Analysis and prediction of the packing of alpha-helices against a beta-sheet in the tertiary structure of globular proteins. J Mol Biol. 1982 Apr 25;156(4):821–862. doi: 10.1016/0022-2836(82)90144-9. [DOI] [PubMed] [Google Scholar]
- Coligan J. E., Kindt T. J., Uehara H., Martinko J., Nathenson S. G. Primary structure of a murine transplantation antigen. Nature. 1981 May 7;291(5810):35–39. doi: 10.1038/291035a0. [DOI] [PubMed] [Google Scholar]
- Cunningham B. A., Wang J. L., Berggård I., Peterson P. A. The complete amino acid sequence of beta 2-microglobulin. Biochemistry. 1973 Nov 20;12(24):4811–4822. doi: 10.1021/bi00748a001. [DOI] [PubMed] [Google Scholar]
- DAVIES D. R. A CORRELATION BETWEEN AMINO ACID COMPOSITION AND PROTEIN STRUCTURE. J Mol Biol. 1964 Aug;9:605–609. doi: 10.1016/s0022-2836(64)80232-1. [DOI] [PubMed] [Google Scholar]
- Deconinck M., Peiffer S., Depreter J., Paul C., Schnek A. G., Leonis J. The primary sequence of chicken myoglobin (Gallus gallus). Biochim Biophys Acta. 1975 Apr 29;386(2):567–575. doi: 10.1016/0005-2795(75)90300-1. [DOI] [PubMed] [Google Scholar]
- Dirkx J. Une méthode semi-empirique de prédiction des régions -hélicoïdales des chaînes polypeptidiques d'après leur structure primaire. Arch Int Physiol Biochim. 1972 Jan;80(1):185–187. [PubMed] [Google Scholar]
- Dugan E. S., Bradshaw R. A., Simms E. S., Eisen H. N. Amino acid sequence of the light chain of a mouse myeloma protein (MOPC-315). Biochemistry. 1973 Dec 18;12(26):5400–5416. [PubMed] [Google Scholar]
- Farnsworth V., Goodfliesh R., Rodkey S., Hood L. Immunoglobulin allotypes of rabbit kappa chains: polymorphism of a control mechanism regulating closely linked duplicated genes? Proc Natl Acad Sci U S A. 1976 Apr;73(4):1293–1296. doi: 10.1073/pnas.73.4.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinstein A. Immunoglobulins and histocompatibility antigens. Nature. 1979 Nov 15;282(5736):230–230. doi: 10.1038/282230a0. [DOI] [PubMed] [Google Scholar]
- Finkelstein A. V., Ptitsyn O. B. Statistical analysis of the correlation among amino acid residues in helical, beta-structural and non-regular regions of globular proteins. J Mol Biol. 1971 Dec 28;62(3):613–624. doi: 10.1016/0022-2836(71)90160-4. [DOI] [PubMed] [Google Scholar]
- Gates F. T., 3rd, Coligan J. E., Kindt T. J. Complete amino acid sequence of murine beta 2-microglobulin: structural evidence for strain-related polymorphism. Proc Natl Acad Sci U S A. 1981 Jan;78(1):554–558. doi: 10.1073/pnas.78.1.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gates F. T., 3rd, Coligan J. E., Kindt T. J. Complete amino acid sequence of rabbit beta 2-microglobulin. Biochemistry. 1979 May 29;18(11):2267–2272. doi: 10.1021/bi00578a021. [DOI] [PubMed] [Google Scholar]
- Han K. K., Dautrevaux M., Chaila X., Biserte G. The covalent structure of beef heart myoglobin. Eur J Biochem. 1970 Nov;16(3):465–471. doi: 10.1111/j.1432-1033.1970.tb01103.x. [DOI] [PubMed] [Google Scholar]
- Janin J., Chothia C. Packing of alpha-helices onto beta-pleated sheets and the anatomy of alpha/beta proteins. J Mol Biol. 1980 Oct 15;143(1):95–128. doi: 10.1016/0022-2836(80)90126-6. [DOI] [PubMed] [Google Scholar]
- Jones B. N., Vigna R. A., Dwulet F. E., Bogardt R. A., Lehman L. D., Gurd F. R. Complete amino acid sequence of the myoglobin from the Atlantic bottlenosed dolphin, Tursiops truncatus. Biochemistry. 1976 Oct 5;15(20):4418–4422. doi: 10.1021/bi00665a011. [DOI] [PubMed] [Google Scholar]
- KENDREW J. C., WATSON H. C., STRANDBERG B. E., DICKERSON R. E., PHILLIPS D. C., SHORE V. C. The amino-acid sequence x-ray methods, and its correlation with chemical data. Nature. 1961 May 20;190:666–670. doi: 10.1038/190666a0. [DOI] [PubMed] [Google Scholar]
- Kimball E. S., Nathenson S. G., Coligan J. E. Amino acid sequence of residues 1-98 of the K-2Kb murine major histocompatibility alloantigen: comparison with H-2Kb and H-2db reveals extensive localized differences. Biochemistry. 1981 May 26;20(11):3301–3308. doi: 10.1021/bi00514a049. [DOI] [PubMed] [Google Scholar]
- Klein J. The major histocompatibility complex of the mouse. Science. 1979 Feb 9;203(4380):516–521. doi: 10.1126/science.104386. [DOI] [PubMed] [Google Scholar]
- Korman A. J., Auffray C., Schamboeck A., Strominger J. L. The amino acid sequence and gene organization of the heavy chain of the HLA-DR antigen: homology to immunoglobulins. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6013–6017. doi: 10.1073/pnas.79.19.6013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kratzin H., Yang C. Y., Götz H., Pauly E., Kölbel S., Egert G., Thinnes F. P., Wernet P., Altevogt P., Hilschmann N. Primärstruktur menschlicher Histokompatibilitätsantigene der Klasse II. 1. Mitteilung: Aminosäuresequenz der N-terminalen 198 Reste der beta-Kette des HLA-Dw2,2;DR2,2-Alloantigens. Hoppe Seylers Z Physiol Chem. 1981 Dec;362(12):1665–1669. [PubMed] [Google Scholar]
- Kuntz I. D. Protein folding. J Am Chem Soc. 1972 May 31;94(11):4009–4012. doi: 10.1021/ja00766a060. [DOI] [PubMed] [Google Scholar]
- Lancet D., Parham P., Strominger J. L. Heavy chain of HLA-A and HLA-B antigens is conformationally labile: a possible role for beta 2-microglobulin. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3844–3848. doi: 10.1073/pnas.76.8.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larhammar D., Schenning L., Gustafsson K., Wiman K., Claesson L., Rask L., Peterson P. A. Complete amino acid sequence of an HLA-DR antigen-like beta chain as predicted from the nucleotide sequence: similarities with immunoglobulins and HLA-A, -B, and -C antigens. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3687–3691. doi: 10.1073/pnas.79.12.3687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. S., Trowsdale J., Travers P. J., Carey J., Grosveld F., Jenkins J., Bodmer W. F. Sequence of an HLA-DR alpha-chain cDNA clone and intron-exon organization of the corresponding gene. Nature. 1982 Oct 21;299(5885):750–752. doi: 10.1038/299750a0. [DOI] [PubMed] [Google Scholar]
- Lesk A. M., Chothia C. Evolution of proteins formed by beta-sheets. II. The core of the immunoglobulin domains. J Mol Biol. 1982 Sep 15;160(2):325–342. doi: 10.1016/0022-2836(82)90179-6. [DOI] [PubMed] [Google Scholar]
- Levitt M. Conformational preferences of amino acids in globular proteins. Biochemistry. 1978 Oct 3;17(20):4277–4285. doi: 10.1021/bi00613a026. [DOI] [PubMed] [Google Scholar]
- Lim V. I. Algorithms for prediction of alpha-helical and beta-structural regions in globular proteins. J Mol Biol. 1974 Oct 5;88(4):873–894. doi: 10.1016/0022-2836(74)90405-7. [DOI] [PubMed] [Google Scholar]
- Malissen M., Malissen B., Jordan B. R. Exon/intron organization and complete nucleotide sequence of an HLA gene. Proc Natl Acad Sci U S A. 1982 Feb;79(3):893–897. doi: 10.1073/pnas.79.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maloy W. L., Nathenson S. G., Coligan J. E. Primary structure of murine major histocompatibility complex alloantigens. Amino acid sequence of the NH2-terminal ninety-eight residues of the H-2Db glycoprotein. J Biol Chem. 1981 Mar 25;256(6):2863–2872. [PubMed] [Google Scholar]
- McNicholas J., Steinmetz M., Hunkapiller T., Jones P., Hood L. DNA sequence of the gene encoding the E alpha Ia polypeptide of the BALB/c mouse. Science. 1982 Dec 17;218(4578):1229–1232. doi: 10.1126/science.6815800. [DOI] [PubMed] [Google Scholar]
- Nagano K. Logical analysis of the mechanism of protein folding II. The nucleation process. J Mol Biol. 1974 Apr 5;84(2):337–372. doi: 10.1016/0022-2836(74)90588-9. [DOI] [PubMed] [Google Scholar]
- Nagano K. Logical analysis of the mechanism of protein folding. I. Predictions of helices, loops and beta-structures from primary structure. J Mol Biol. 1973 Apr 5;75(2):401–420. doi: 10.1016/0022-2836(73)90030-2. [DOI] [PubMed] [Google Scholar]
- Novotný J., Franek F., Margolies M. N., Haber E. Amino acid sequence of normal (microheterogeneous) porcine immunoglobulin lambda chains. Biochemistry. 1977 Aug 23;16(17):3765–3772. doi: 10.1021/bi00636a006. [DOI] [PubMed] [Google Scholar]
- Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
- Orr H. T., Lancet D., Robb R. J., Lopez de Castro J. A., Strominger J. L. The heavy chain of human histocompatibility antigen HLA-B7 contains an immunoglobulin-like region. Nature. 1979 Nov 15;282(5736):266–270. doi: 10.1038/282266a0. [DOI] [PubMed] [Google Scholar]
- Orr H. T., López de Castro J. A., Lancet D., Strominger J. L. Complete amino acid sequence of a papain-solubilized human histocompatibility antigen, HLA-B7. 2. Sequence determination and search for homologies. Biochemistry. 1979 Dec 11;18(25):5711–5720. doi: 10.1021/bi00592a030. [DOI] [PubMed] [Google Scholar]
- Ponnuswamy P. K., Prabhakaran M., Manavalan P. Hydrophobic packing and spatial arrangement of amino acid residues in globular proteins. Biochim Biophys Acta. 1980 Jun 26;623(2):301–316. doi: 10.1016/0005-2795(80)90258-5. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. Handedness of crossover connections in beta sheets. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2619–2623. doi: 10.1073/pnas.73.8.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Robson B. Analysis of code relating sequences to conformation in globular prtoeins. Theory and application of expected information. Biochem J. 1974 Sep;141(3):853–867. doi: 10.1042/bj1410853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romero Herrera A. E., Lehmann H. The myoglobin of primates. I. Hylobates agilis (gibbon). Biochim Biophys Acta. 1971 Dec 28;251(3):482–488. doi: 10.1016/0005-2795(71)90140-1. [DOI] [PubMed] [Google Scholar]
- Romero-Herrera A. E., Lehmann H. The primary structure of the myoglobin of Didelphis marsupialis (Virginia opossum). Biochim Biophys Acta. 1975 Aug 19;400(2):387–398. doi: 10.1016/0005-2795(75)90194-4. [DOI] [PubMed] [Google Scholar]
- Rose G. D. Prediction of chain turns in globular proteins on a hydrophobic basis. Nature. 1978 Apr 13;272(5654):586–590. doi: 10.1038/272586a0. [DOI] [PubMed] [Google Scholar]
- Rose G. D., Roy S. Hydrophobic basis of packing in globular proteins. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4643–4647. doi: 10.1073/pnas.77.8.4643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saul F. A., Amzel L. M., Poljak R. J. Preliminary refinement and structural analysis of the Fab fragment from human immunoglobulin new at 2.0 A resolution. J Biol Chem. 1978 Jan 25;253(2):585–597. [PubMed] [Google Scholar]
- Schiffer M., Edmundson A. B. Correlation of amino acid sequence and conformation in tobacco mosaic virus. Biophys J. 1968 Jan;8(1):29–39. doi: 10.1016/S0006-3495(68)86472-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shackelford D. A., Kaufman J. F., Korman A. J., Strominger J. L. HLA-DR antigens: structure, separation of subpopulations, gene cloning and function. Immunol Rev. 1982;66:133–187. doi: 10.1111/j.1600-065x.1982.tb00437.x. [DOI] [PubMed] [Google Scholar]
- Staden R. Sequence data handling by computer. Nucleic Acids Res. 1977 Nov;4(11):4037–4051. doi: 10.1093/nar/4.11.4037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinmetz M., Moore K. W., Frelinger J. G., Sher B. T., Shen F. W., Boyse E. A., Hood L. A pseudogene homologous to mouse transplantation antigens: transplantation antigens are encoded by eight exons that correlate with protein domains. Cell. 1981 Sep;25(3):683–692. doi: 10.1016/0092-8674(81)90175-6. [DOI] [PubMed] [Google Scholar]
- Sternberg M. J., Thornton J. M. On the conformation of proteins: the handedness of the connection between parallel beta-strands. J Mol Biol. 1977 Feb 25;110(2):269–283. doi: 10.1016/s0022-2836(77)80072-7. [DOI] [PubMed] [Google Scholar]
- Trägårdh L., Curman B., Wiman K., Rask L., Peterson P. A. Chemical, physical-chemical, and immunological properties of papain-solubilized human transplatation antigens. Biochemistry. 1979 May 29;18(11):2218–2226. doi: 10.1021/bi00578a013. [DOI] [PubMed] [Google Scholar]
- Wolfe P. B., Cebra J. J. The primary structure of guinea pig beta 2-microglobulin. Mol Immunol. 1980 Dec;17(12):1493–1505. doi: 10.1016/0161-5890(80)90175-3. [DOI] [PubMed] [Google Scholar]
- Zull J. E., Lev N. B. A theoretical study of the structure of parathyroid hormone. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3791–3795. doi: 10.1073/pnas.77.7.3791. [DOI] [PMC free article] [PubMed] [Google Scholar]