Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications (original) (raw)

Abstract

Imipramine is the prototypic tricyclic antidepressant utilized in the treatment of major depression and exerts its therapeutic efficacy only after prolonged administration. We report a study of the effects of short-term (2 wk) and long-term (8 wk) administration of imipramine on the expression of central nervous system genes among those thought to be dysregulated in imipramine-responsive major depression. As assessed by in situ hybridization, 8 wk of daily imipramine treatment (5 mg/kg, i.p.) in rats decreased corticotropin-releasing hormone (CRH) mRNA levels by 37% in the paraventricular nucleus (PVN) of the hypothalamus and decreased tyrosine hydroxylase (TH) mRNA levels by 40% in the locus coeruleus (LC). These changes were associated with a 70% increase in mRNA levels of the hippocampal mineralocorticoid receptor (MR, type I) that is thought to play an important role in mediating the negative feedback effects of low levels of steroids on the hypothalamic-pituitary-adrenal (HPA) axis. Imipramine also decreased proopiomelanocortin (POMC) mRNA levels by 38% and glucocorticoid receptor (GR, type II) mRNA levels by 51% in the anterior pituitary. With the exception of a 20% decrease in TH mRNA in the LC after 2 wk of imipramine administration, none of these changes in gene expression were evident as a consequence of short-term administration of the drug. In the light of data that major depression is associated with an activation of brain CRH and LC-NE systems, the time-dependent effect of long-term imipramine administration on decreasing the gene expression of CRH in the hypothalamus and TH in the LC may be relevant to the therapeutic efficacy of this agent in depression.

831

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arriza J. L., Simerly R. B., Swanson L. W., Evans R. M. The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron. 1988 Nov;1(9):887–900. doi: 10.1016/0896-6273(88)90136-5. [DOI] [PubMed] [Google Scholar]
  2. Baker G. B., Greenshaw A. J. Effects of long-term administration of antidepressants and neuroleptics on receptors in the central nervous system. Cell Mol Neurobiol. 1989 Mar;9(1):1–44. doi: 10.1007/BF00711441. [DOI] [PubMed] [Google Scholar]
  3. Calogero A. E., Gallucci W. T., Chrousos G. P., Gold P. W. Catecholamine effects upon rat hypothalamic corticotropin-releasing hormone secretion in vitro. J Clin Invest. 1988 Sep;82(3):839–846. doi: 10.1172/JCI113687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chrousos G. P., Schulte H. M., Oldfield E. H., Gold P. W., Cutler G. B., Jr, Loriaux D. L. The corticotropin-releasing factor stimulation test. An aid in the evaluation of patients with Cushing's syndrome. N Engl J Med. 1984 Mar 8;310(10):622–626. doi: 10.1056/NEJM198403083101004. [DOI] [PubMed] [Google Scholar]
  5. Drouin J., Chamberland M., Charron J., Jeannotte L., Nemer M. Structure of the rat pro-opiomelanocortin (POMC) gene. FEBS Lett. 1985 Nov 25;193(1):54–58. doi: 10.1016/0014-5793(85)80078-8. [DOI] [PubMed] [Google Scholar]
  6. Gold P. W., Goodwin F. K., Chrousos G. P. Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (2) N Engl J Med. 1988 Aug 18;319(7):413–420. doi: 10.1056/NEJM198808183190706. [DOI] [PubMed] [Google Scholar]
  7. Gold P. W., Loriaux D. L., Roy A., Kling M. A., Calabrese J. R., Kellner C. H., Nieman L. K., Post R. M., Pickar D., Gallucci W. Responses to corticotropin-releasing hormone in the hypercortisolism of depression and Cushing's disease. Pathophysiologic and diagnostic implications. N Engl J Med. 1986 May 22;314(21):1329–1335. doi: 10.1056/NEJM198605223142101. [DOI] [PubMed] [Google Scholar]
  8. Grima B., Lamouroux A., Blanot F., Biguet N. F., Mallet J. Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc Natl Acad Sci U S A. 1985 Jan;82(2):617–621. doi: 10.1073/pnas.82.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herkenham M., Pert C. B. Light microscopic localization of brain opiate receptors: a general autoradiographic method which preserves tissue quality. J Neurosci. 1982 Aug;2(8):1129–1149. doi: 10.1523/JNEUROSCI.02-08-01129.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herman J. P., Schäfer M. K., Young E. A., Thompson R., Douglass J., Akil H., Watson S. J. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J Neurosci. 1989 Sep;9(9):3072–3082. doi: 10.1523/JNEUROSCI.09-09-03072.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jingami H., Mizuno N., Takahashi H., Shibahara S., Furutani Y., Imura H., Numa S. Cloning and sequence analysis of cDNA for rat corticotropin-releasing factor precursor. FEBS Lett. 1985 Oct 21;191(1):63–66. doi: 10.1016/0014-5793(85)80994-7. [DOI] [PubMed] [Google Scholar]
  12. McEwen B. S., Weiss J. M., Schwartz L. S. Selective retention of corticosterone by limbic structures in rat brain. Nature. 1968 Nov 30;220(5170):911–912. doi: 10.1038/220911a0. [DOI] [PubMed] [Google Scholar]
  13. Miesfeld R., Rusconi S., Godowski P. J., Maler B. A., Okret S., Wikström A. C., Gustafsson J. A., Yamamoto K. R. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell. 1986 Aug 1;46(3):389–399. doi: 10.1016/0092-8674(86)90659-8. [DOI] [PubMed] [Google Scholar]
  14. Nemeroff C. B., Widerlöv E., Bissette G., Walléus H., Karlsson I., Eklund K., Kilts C. D., Loosen P. T., Vale W. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science. 1984 Dec 14;226(4680):1342–1344. doi: 10.1126/science.6334362. [DOI] [PubMed] [Google Scholar]
  15. Plotsky P. M., Cunningham E. T., Jr, Widmaier E. P. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev. 1989 Nov;10(4):437–458. doi: 10.1210/edrv-10-4-437. [DOI] [PubMed] [Google Scholar]
  16. Plotsky P. M. Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology. 1987 Sep;121(3):924–930. doi: 10.1210/endo-121-3-924. [DOI] [PubMed] [Google Scholar]
  17. Pok Phak R., Conquy T., Gouezo F., Viala A., Grimaldi F. Determination of metapramine, imipramine, trimipramine and their major metabolites in plasma by reversed-phase column liquid chromatography. J Chromatogr. 1986 Mar 7;375(2):339–347. doi: 10.1016/s0378-4347(00)83726-3. [DOI] [PubMed] [Google Scholar]
  18. Ratka A., Sutanto W., Bloemers M., de Kloet E. R. On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology. 1989 Aug;50(2):117–123. doi: 10.1159/000125210. [DOI] [PubMed] [Google Scholar]
  19. Reul J. M., de Kloet E. R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 1985 Dec;117(6):2505–2511. doi: 10.1210/endo-117-6-2505. [DOI] [PubMed] [Google Scholar]
  20. Roy A., Pickar D., Paul S., Doran A., Chrousos G. P., Gold P. W. CSF corticotropin-releasing hormone in depressed patients and normal control subjects. Am J Psychiatry. 1987 May;144(5):641–645. doi: 10.1176/ajp.144.5.641. [DOI] [PubMed] [Google Scholar]
  21. Sapolsky R. M., Krey L. C., McEwen B. S. Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6174–6177. doi: 10.1073/pnas.81.19.6174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shimoda K., Yamada N., Ohi K., Tsujimoto T., Takahashi K., Takahashi S. Chronic administration of tricyclic antidepressants suppresses hypothalamo-pituitary-adrenocortical activity in male rats. Psychoneuroendocrinology. 1988;13(5):431–440. doi: 10.1016/0306-4530(88)90049-2. [DOI] [PubMed] [Google Scholar]
  23. Siever L. J., Davis K. L. Overview: toward a dysregulation hypothesis of depression. Am J Psychiatry. 1985 Sep;142(9):1017–1031. doi: 10.1176/ajp.142.9.1017. [DOI] [PubMed] [Google Scholar]
  24. Szafarczyk A., Malaval F., Laurent A., Gibaud R., Assenmacher I. Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology. 1987 Sep;121(3):883–892. doi: 10.1210/endo-121-3-883. [DOI] [PubMed] [Google Scholar]
  25. Whitfield H. J., Jr, Brady L. S., Smith M. A., Mamalaki E., Fox R. J., Herkenham M. Optimization of cRNA probe in situ hybridization methodology for localization of glucocorticoid receptor mRNA in rat brain: a detailed protocol. Cell Mol Neurobiol. 1990 Mar;10(1):145–157. doi: 10.1007/BF00733641. [DOI] [PubMed] [Google Scholar]
  26. Young W. S., 3rd, Bonner T. I., Brann M. R. Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9827–9831. doi: 10.1073/pnas.83.24.9827. [DOI] [PMC free article] [PubMed] [Google Scholar]