The Znt4 mutation inlethal milk mice affects intestinal zinc homeostasis through the expression of other Zn transporters (original) (raw)

Abstract

The lethal milk mouse syndrome is caused by a point mutation in the zinc transporter gene ZnT4 resulting in defective zinc secretion in the milk of homozygous mutant dams. Pups of any genotype fed solely on lm milk die within the first two weeks of neonatal life, displaying zinc deficiency symptoms. Homozygous mutant pups survive when foster nursed by wild type dams and show signs of mild zinc deficiency in adulthood. To further investigate the role of ZnT4 in zinc secretion in the intestinal epithelium, we have studied the expression by real time quantitative PCR of mutant ZnT4 and of other zinc transporters of the Zip and ZnT families, in the jejunum of homozygous lm mice and of the isogenic wild type strain C57BL/ 6J. We report in this paper that expression of the mutant ZnT4 mRNA, carrying a premature translational termination codon (ZnT4/lm), is almost absent in tissues from lm mice, probably as a result of degradation by the Nonsense Mediated mRNA Decay (NMD) Pathway. In the jejunum of mutant mice, we also observed decreased expression of the uptake zinc transporter Zip4, paralleled by increased levels of both metallothionein genes MTI and MTII. Zinc supplementation of lm mice in the drinking water did not result in further decrease of Zip4 expression, but led to full induction of MT mRNAs. These results lead us to conclude that, although in the enterocytes of lm mice the absence of the zinc secretion activity mediated by ZnT4 results in increased intracellular zinc concentration, other zinc efflux activities are able to maintain the level of zinc ions below the threshold necessary for full induction of metallothioneins.

Key words: Copper, Copper transporter, lm syndrome, Metallothionein, zinc deficiency, ZnT4, Zinc Transporter

Full Text

The Full Text of this article is available as a PDF (985.4 KB).

References

  1. Ackland M.L., Mercer J.F.B. The murine mutation, lethal milk, results in production of zinc-deficient milk. Journal of Nutrition. 1992;122:1214–1218. doi: 10.1093/jn/122.6.1214. [DOI] [PubMed] [Google Scholar]
  2. Ackland, M.L. and Michalczyk, A. (2006) Zinc Deficiency and its Inherited Disorders —a Review.Genes & Nutrition1, this issue. [DOI] [PMC free article] [PubMed]
  3. Barilà D., Murgia C., Nobili F., Gaetani S., Perozzi G. Subtractive hybridization cloning of novel genes differentially expressed during rat intestinal development. European Journal of Biochemistry. 1994;223:701–709. doi: 10.1111/j.1432-1033.1994.tb19043.x. [DOI] [PubMed] [Google Scholar]
  4. Chimienti F., Devergnas S., Favier A., Seve M. Identification and cloning of a β-cell-specific zinc transporter, ZnT8, localized into insulin secretory granules. Diabetes. 2004;53:2330–2337. doi: 10.2337/diabetes.53.9.2330. [DOI] [PubMed] [Google Scholar]
  5. Conti E., Izaurralde E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Current Opinion in Cell Biology. 2005;17:316–25. doi: 10.1016/j.ceb.2005.04.005. [DOI] [PubMed] [Google Scholar]
  6. Cousins R.J., McMahon R.J. Integrative aspects of zinc transporters. Journal of Nutrition. 2000;130:1384S–1387S. doi: 10.1093/jn/130.5.1384S. [DOI] [PubMed] [Google Scholar]
  7. Coyle P., Philcox J.C., Carey L.C., Rofe A.M. Metallothionein: the multipurpose protein. Cellular & Molecular Life Sciences. 2002;59:627–47. doi: 10.1007/s00018-002-8454-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis S.R., Cousins R.J. Metallothionein expression in animals: a physiological perspective on function. Journal of Nutrition. 2000;130:1085–8. doi: 10.1093/jn/130.5.1085. [DOI] [PubMed] [Google Scholar]
  9. Dufner-Beattie J., Kuo Y.M., Gitschier J., Andrews G.K. The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. Journal of Biological Chemistry. 2004;279:49082–90. doi: 10.1074/jbc.M409962200. [DOI] [PubMed] [Google Scholar]
  10. Dufner-Beattie J., Wang F., Kuo Y.M., Gitschier J., Eide D., Andrews G.K. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. Journal of Biological Chemistry. 2003;278:33474–81. doi: 10.1074/jbc.M305000200. [DOI] [PubMed] [Google Scholar]
  11. Eide D.J. The SLC39 family of metal ion transporters. Pflugers Archives European Journal of Physiology. 2004;447:796–800. doi: 10.1007/s00424-003-1074-3. [DOI] [PubMed] [Google Scholar]
  12. Erway L.C., Grider A. Zinc metabolism in lethal-milk mice. Otolith, lactation, and aging effects. Journal of Heredity. 1984;75:480–484. doi: 10.1093/oxfordjournals.jhered.a109990. [DOI] [PubMed] [Google Scholar]
  13. Fraker P.J., King L.E., Laakko T., Vollmer T. The dynamic link between the integrity of the immune system and zinc status. Journal of Nutrition. 2000;130:1399S–1406S. doi: 10.1093/jn/130.5.1399S. [DOI] [PubMed] [Google Scholar]
  14. Frausto da Silva J.J.R., Williams R.J.P. The Biological Chemistry of the Elements. Oxford, U.K.: Clarendon Press; 1991. [Google Scholar]
  15. Frederickson C.J., Suh S.W., Silva D., Frederickson C.J., Thompson R.B. Importance of zinc in the central nervous system: the zinc-containing neuron. Journal of Nutrition. 2000;130:1471S–1483S. doi: 10.1093/jn/130.5.1471S. [DOI] [PubMed] [Google Scholar]
  16. Green M., Sweet H. Locus order lm-a-Ra. Mouse News Letters. 1973;49:32–32. [Google Scholar]
  17. Grider A., Erway L.C. Intestinal metallothionein in lethal-milk mice with systemic zinc deficiency. Biochemical Genetics. 1986;24:635–42. doi: 10.1007/BF00504340. [DOI] [PubMed] [Google Scholar]
  18. Henshall S.M., Afar D.E., Rasiah K.K., Horvath L.G., Gish K., Caras I., Ramakrishnan V., Wong M., Jeffry U., Kench J.G., Quinn D.I., Turner J.J., Delprado W., Lee C.S., Golovsky D., Brenner P.C., O’Neill G.F., Kooner R., Stricker P.D., Grygiel J.J., Mack D.H., Sutherland R.L. Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene. 2003;22:6005–12. doi: 10.1038/sj.onc.1206797. [DOI] [PubMed] [Google Scholar]
  19. Huang L., Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nature Genetics. 1997;17:292–297. doi: 10.1038/ng1197-292. [DOI] [PubMed] [Google Scholar]
  20. Huang L., Kirschke C.P., Gitschier J. Functional characterization of a novel mammalian zinc transporter, ZnT6. Journal of Biological Chemistry. 2002;277:26389–95. doi: 10.1074/jbc.M200462200. [DOI] [PubMed] [Google Scholar]
  21. Kambe T., Narita H., Yamaguchi-Iwai Y., Hirose J., Amano T., Sugiura N., Sasaki R., Mori K., Iwanaga T., Nagao M. Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. Journal of Biological Chemistry. 2002;277:19049–55. doi: 10.1074/jbc.M200910200. [DOI] [PubMed] [Google Scholar]
  22. Kambe T., Yamaguchi-Iwai Y., Sasaki R., Nagao M. Overview of mammalian zinc transporters. Cellular & Molecular Life Sciences. 2004;61:49–68. doi: 10.1007/s00018-003-3148-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kirschke C.P., Huang L. ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. Journal of Biological Chemistry. 2003;278:4096–102. doi: 10.1074/jbc.M207644200. [DOI] [PubMed] [Google Scholar]
  24. Kury S., Dreno B., Bezieau S., Giraudet S., Kharfi M., Kamoun R., Moisan J. P. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nature Genetics. 2002;31:239–40. doi: 10.1038/ng913. [DOI] [PubMed] [Google Scholar]
  25. Kury S., Kharfi M., Kamoun R., Taieb A., Mallet E., Baudon J.J., Glastre C., Michel B., Sebag F., Brooks D., Schuster V., Scoul C., Dreno B., Bezieau S., Moisan J.P. Mutation spectrum of human SLC39A4 in a panel of patients with acrodermatitis enteropathica. Human Mutation. 2003;22:337–8. doi: 10.1002/humu.9178. [DOI] [PubMed] [Google Scholar]
  26. Langmade S.J., Ravindra R., Daniels P.J., Andrews G.K. The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. Journal of Biological Chemistry. 2000;275:34803–9. doi: 10.1074/jbc.M007339200. [DOI] [PubMed] [Google Scholar]
  27. Lee D.Y., Shay N.F., Cousins R.J. Altered zinc metabolism occurs in murine lethal milk syndrome. Journal of Nutrition. 1992;122:2233–8. doi: 10.1093/jn/122.11.2233. [DOI] [PubMed] [Google Scholar]
  28. Lichtlen P., Schaffner W. Putting its fingers on stressful situations: the heavy metal-regulatory transcription factor MTF-1. Bioessays. 2001;23:1010–7. doi: 10.1002/bies.1146. [DOI] [PubMed] [Google Scholar]
  29. Liuzzi J.P., Bobo J.A., Lichten L.A., Samuelson D.A., Cousins R.J. Responsive transporter genes within the murine intestinal-pancreatic axis form a basis of zinc homeostasis. Proceedings of the National Academy of Sciences USA. 2004;101:14355–60. doi: 10.1073/pnas.0406216101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McMahon R.J., Cousins R.J. Mammalian zinc transporters. Journal of Nutrition. 1998;128:667–70. doi: 10.1093/jn/128.4.667. [DOI] [PubMed] [Google Scholar]
  31. Michalczyk A., Allen J., Blomeley R.C., Ackland M.L. Constitutive expression of hZnT4 zinc transporter in human breast epithelial cells. Biochemical Journal. 2002;364:105–13. doi: 10.1042/bj3640105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Michalczyk A., Varigos G., Catto-Smith A., Blomeley R.C., Ackland M.L. Analysis of zinc transporter, hZnT4 (Slc30A4), gene expression in a mammary gland disorder leading to reduced zinc secretion into milk. Human Genetics. 2003;113:202–10. doi: 10.1007/s00439-003-0952-2. [DOI] [PubMed] [Google Scholar]
  33. Murgia, C., Lang, C., Grosser, D., Ruffin, R., Perozzi, G.,Truong-Tran, A.-Q., Ho, L. and Zalewski, P. (2006) The role of zinc and its specific transporters in airway physiology and disease.Current Drug Targets7, in press. [DOI] [PubMed]
  34. Murgia C., Vespignani I., Cerase J., Nobili F., Perozzi G. Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cells. American Journal of Physiology. 1999;277:G1231–G1239. doi: 10.1152/ajpgi.1999.277.6.G1231. [DOI] [PubMed] [Google Scholar]
  35. Palmiter R.D., Cole T.B., Findley S.D. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vescicular sequestration. EMBO Journal. 1996;15:1784–1791. [PMC free article] [PubMed] [Google Scholar]
  36. Palmiter R.D., Cole T.B., Quaife C.J., Findley S.D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proceedings of the National Academy of Sciences USA. 1996;93:14934–14939. doi: 10.1073/pnas.93.25.14934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Palmiter R.D., Huang L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Archives European Journal of Physiology. 2004;447:744–51. doi: 10.1007/s00424-003-1070-7. [DOI] [PubMed] [Google Scholar]
  38. Pascale M. C., Franceschelli S., Moltedo O., Belleudi F., Torrisi M. R., Bucci C., La Fontaine S., Mercer J.F., Leone A. Endosomal trafficking of the Menkes copper ATPase ATP7A is mediated by vesicles containing the Rab7 and Rab5 GTPase proteins. Experimental Cell Research. 2003;291:377–85. doi: 10.1016/j.yexcr.2003.07.001. [DOI] [PubMed] [Google Scholar]
  39. Petris M.J., Mercer J.F., Culvenor J.G., Lockhart P., Gleeson P.A., Camakaris J. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO Journal. 1996;15:6084–95. [PMC free article] [PubMed] [Google Scholar]
  40. Piletz J. E., Ganschow R. E. Zinc deficiency in murine milk underlies expression of the lethal milk (lm) mutation. Science. 1978;199:181–183. doi: 10.1126/science.619449. [DOI] [PubMed] [Google Scholar]
  41. Ranaldi G., Perozzi G., Truong-Tran A., Zalewski P., Murgia C. Intracellular distribution of labile Zn(II) and zinc transporter expression in kidney and MDCK cells. American Journal of Physiology. 2002;283:F1365–F1375. doi: 10.1152/ajprenal.00094.2002. [DOI] [PubMed] [Google Scholar]
  42. Rozen S., Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology. 2000;132:365–86. doi: 10.1385/1-59259-192-2:365. [DOI] [PubMed] [Google Scholar]
  43. Wouwe J. Clinical and laboratory diagnosis of Acrodermatite enteropatica. European Journal of Pediatrics. 1989;149:2–8. doi: 10.1007/BF02024322. [DOI] [PubMed] [Google Scholar]
  44. Wang F., Kim B.E., Petris M.J., Eide D.J. The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. Journal of Biological Chemistry. 2004;279:51433–41. doi: 10.1074/jbc.M408361200. [DOI] [PubMed] [Google Scholar]
  45. Wang K., Pugh E.W., Griffen S., Doheny K.F., Mostafa W.Z., al-Aboosi M.M., el-Shanti H., Gitschier J. Homozygosity mapping places the acrodermatitis enteropathica gene on chromosomal region 8q24.3. American Journal of Human Genetics. 2001;68:1055–60. doi: 10.1086/319514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wang K., Zhou B., Kuo Y.M., Zemansky J., Gitschier J. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. American Journal of Human Genetics. 2002;71:66–73. doi: 10.1086/341125. [DOI] [PMC free article] [PubMed] [Google Scholar]