Hormone receptor modulates the regulatory component of adenylyl cyclase by reducing its requirement for Mg2+ and enhancing its extent of activation by guanine nucleotides (original) (raw)

Abstract

N-Ethylmaleimide treatment of rat liver plasma membranes results in an adenylyl cyclase (EC 4.6.1.1) system that shows no measurable cyclizing activity but retains both an active glucagon receptor and a receptor-sensitive regulatory component N as assessed by reconstitution into cyclase-negative (cyc-) membranes from S49 murine lymphoma. Treatment of such N-ethylmaleimide-treated membranes, termed C- liver membranes, with guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S] ) and Mg2+, followed by the removal of GTP[gamma S] by washing, yields an activated N which upon mixing with cyc- S49 membranes reconstitutes the cyc- S49 membrane adenylyl cyclase in the absence of added GTP[gamma S]. It was found that GTP[gamma S] activation of the N at saturating concentrations of GTP[gamma S] is slow at low Mg2+ concentration and accelerated by increasing Mg2+ concentrations. Addition of glucagon during the activation results in a lowering of the Mg2+ requirement for full activation from 25 mM to around 10 muM and in concomitant increases in both the rate and the extent of N activation. In contrast to its dramatic effect on Mg2+ requirement, glucagon has little (less than 2-fold) effect on the GTP[gamma S] requirement of N activation. These experiments indicate that the glucagon receptor facilitates activation of N by: (i) decreasing the apparent Km of N for Mg2+, and (ii) increasing the extent of activation that can be elicited by saturating concentrations of guanine nucleotide. It is postulated that the mechanism by which Mg2+ and receptors facilitate N activation involves dissociation of n alpha activated ADP-ribosylatable subunits (with guanine nucleotide bound to them) from n beta non-ADP-ribosylatable subunits (with receptor and Mg2+ bound to them).

5179

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez R., Bruno J. J. Activation of cardiac adenylate cyclase: horminal modification of the magnesium ion requirement. Proc Natl Acad Sci U S A. 1977 Jan;74(1):92–95. doi: 10.1073/pnas.74.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnbaumer L., Pohl S. L., Rodbell M. Adenyl cyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. J Biol Chem. 1969 Jul 10;244(13):3468–3476. [PubMed] [Google Scholar]
  3. Birnbaumer L., Swartz T. L., Abramowitz J., Mintz P. W., Iyengar R. Transient and steady state kinetics of the interaction of guanyl nucleotides with the adenylyl cyclase system from rat liver plasma membranes. Interpretation in terms of a simple two-state model. J Biol Chem. 1980 Apr 25;255(8):3542–3551. [PubMed] [Google Scholar]
  4. Gupta R. K., Moore R. D. 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem. 1980 May 10;255(9):3987–3993. [PubMed] [Google Scholar]
  5. Hanski E., Sternweis P. C., Northup J. K., Dromerick A. W., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties of the turkey erythrocyte protein. J Biol Chem. 1981 Dec 25;256(24):12911–12919. [PubMed] [Google Scholar]
  6. Howlett A. C., Gilman A. G. Hydrodynamic properties of the regulatory component of adenylate cyclase. J Biol Chem. 1980 Apr 10;255(7):2861–2866. [PubMed] [Google Scholar]
  7. Hudson T. H., Johnson G. L. Peptide mapping of adenylate cyclase regulatory proteins that are cholera toxin substrates. J Biol Chem. 1980 Aug 10;255(15):7480–7486. [PubMed] [Google Scholar]
  8. Iyengar R., Abramowitz J., Bordelon-Riser M., Birnbaumer L. Hormone receptor-mediated stimulation of adenylyl cyclase systems. Nucleotide effects and analysis in terms of a simple two-state model for the basic receptor-affected enzyme. J Biol Chem. 1980 Apr 25;255(8):3558–3564. [PubMed] [Google Scholar]
  9. Iyengar R., Abramowitz J., Bordelon-Riser M., Blume A. J., Birnbaumer L. Regulation of hormone-receptor coupling to adenylyl cyclase. Effects of GTP and GDP. J Biol Chem. 1980 Nov 10;255(21):10312–10321. [PubMed] [Google Scholar]
  10. Iyengar R., Bhat M. K., Riser M. E., Birnbaumer L. Receptor-specific desensitization of the S49 lymphoma cell adenylyl cyclase. Unaltered behavior of the regulatory component. J Biol Chem. 1981 May 25;256(10):4810–4815. [PubMed] [Google Scholar]
  11. Iyengar R., Birnbaumer L. Hysteretic activation of adenylyl cyclases. I. Effect of Mg ion on the rate of activation by guanine nucleotides and fluoride. J Biol Chem. 1981 Nov 10;256(21):11036–11041. [PubMed] [Google Scholar]
  12. Iyengar R. Hysteretic activation of adenylyl cyclases. II. Mg ion regulation of the activation of the regulatory component as analyzed by reconstitution. J Biol Chem. 1981 Nov 10;256(21):11042–11050. [PubMed] [Google Scholar]
  13. Iyengar R., Mintz P. W., Swartz T. L., Birnbaumer L. Divalent cation-induced desensitization of glucagon-stimulable adenylyl cyclase in rat liver plasma membrane. GTP-dependent stimulation by glucagon. J Biol Chem. 1980 Dec 25;255(24):11875–11882. [PubMed] [Google Scholar]
  14. Iyengar R., Swartz T. L., Birnbaumer L. Coupling of glucagon receptor to adenylyl cyclase. Requirement of a receptor-related guanyl nucleotide binding site for coupling of receptor to the enzyme. J Biol Chem. 1979 Feb 25;254(4):1119–1123. [PubMed] [Google Scholar]
  15. Neer E. J., Salter R. S. Reconstituted adenylate cyclase from bovine brain. Functions of the subunits. J Biol Chem. 1981 Dec 10;256(23):12102–12107. [PubMed] [Google Scholar]
  16. Neet K. E., Ainslie G. R., Jr Hysteretic enzymes. Methods Enzymol. 1980;64:192–226. doi: 10.1016/s0076-6879(80)64010-5. [DOI] [PubMed] [Google Scholar]
  17. Northup J. K., Sternweis P. C., Smigel M. D., Schleifer L. S., Ross E. M., Gilman A. G. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6516–6520. doi: 10.1073/pnas.77.11.6516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pfeuffer T. GTP-binding proteins in membranes and the control of adenylate cyclase activity. J Biol Chem. 1977 Oct 25;252(20):7224–7234. [PubMed] [Google Scholar]
  19. Pfeuffer T. Guanine nucleotide-controlled interactions between components of adenylate cyclase. FEBS Lett. 1979 May 1;101(1):85–89. [PubMed] [Google Scholar]
  20. Rodbell M., Birnbaumer L., Pohl S. L., Krans H. M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J Biol Chem. 1971 Mar 25;246(6):1877–1882. [PubMed] [Google Scholar]
  21. Ross E. M., Gilman A. G. Resolution of some components of adenylate cyclase necessary for catalytic activity. J Biol Chem. 1977 Oct 25;252(20):6966–6969. [PubMed] [Google Scholar]
  22. Ross E. M., Howlett A. C., Ferguson K. M., Gilman A. G. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J Biol Chem. 1978 Sep 25;253(18):6401–6412. [PubMed] [Google Scholar]
  23. Salomon Y., Lin M. C., Londos C., Rendell M., Rodbell M. The hepatic adenylate cyclase system. I. Evidence for transition states and structural requirements for guanine nucloetide activiation. J Biol Chem. 1975 Jun 10;250(11):4239–4245. [PubMed] [Google Scholar]
  24. Sternweis P. C., Northup J. K., Smigel M. D., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem. 1981 Nov 25;256(22):11517–11526. [PubMed] [Google Scholar]
  25. Strittmatter S., Neer E. J. Properties of the separated catalytic and regulatory units of brain adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6344–6348. doi: 10.1073/pnas.77.11.6344. [DOI] [PMC free article] [PubMed] [Google Scholar]