MGSA/GRO transcription is differentially regulated in normal retinal pigment epithelial and melanoma cells (original) (raw)

Abstract

We have characterized constitutive and cytokine-regulated MGSA/GRO alpha, -beta, and -gamma gene expression in normal retinal pigment epithelial (RPE) cells and a malignant melanoma cell line (Hs294T) to discern the mechanism for MGSA/GRO constitutive expression in melanoma. In RPE cells, constitutive MGSA/GRO alpha, -beta, and -gamma mRNAs are not detected by Northern (RNA) blot analysis although nuclear runoff experiments show that all three genes are transcribed. In Hs294T cells, constitutive MGSA/GRO alpha expression is detectable by Northern blot analysis, and the level of basal MGSA/GRO alpha transcription is 8- to 30-fold higher than in RPE cells. In contrast, in Hs294T cells, basal MGSA/GRO beta and -gamma transcription is only twofold higher than in RPE cells and no beta or gamma mRNA is detected by Northern blot. These data suggest that the constitutive MGSA/GRO alpha mRNA in Hs294T cells is due to increased basal MGSA/GRO alpha gene transcription. The cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) significantly increase the mRNA levels for all three MGSA/GRO isoforms in Hs294T and RPE cells, and both transcriptional and posttranscriptional mechanisms are operational. Nuclear runoff assays indicate that in RPE cells, a 1-h IL-1 treatment induces a 10- to 20-fold increase in transcription of MGSA/GRO alpha, -beta and -gamma but only a 2-fold increase in Hs294T cells. Similarly, chloramphenicol acetyltransferase (CAT) reporter gene analysis using the MGSA/GRO alpha, -beta, and -gamma promoter regions demonstrates that IL-1 treatment induces an 8- to 14-fold increase in CAT activity in RPE cells but only a 2-fold increase in Hs294T cells. The effect of deletion or mutation of the MGSA/GRO alpha NF-kappa B element, combined with data from gel mobility shift analyses, indicates that the NF-kappa B p50/p65 heterodimer in RPE cells plays an important role in IL-1- and TNF alpha-enhanced gene transcription. In Hs294T cells, gel shift analyses indicate that IL-1 and TNF alpha induce NF-kappa B complex formation; however, transactivation does not occur, suggesting that subtle differences in the NF-kappa B complexes may result in the inability of the cytokines IL-1 and TNF alpha to activate transcription of the MGSA/GRO genes. IL-1 and TNF alpha posttranscriptionally regulate MGSA/GRO mRNA levels in both cell types. In Hs294T cells, IL-1 increases the half-life of MGSA/GRO alpha from 15 min to 6 h (a 24-fold increase in half-life). These data indicate that IL-1 and TNF alpha transcriptionally and posttranscriptionally regulate MGSA/GRO alpha, -beta, and -gamma mRNA levels in RPE cells, while in Hs294T cells, the major effect of IL-1 and TNF alpha is on mRNA stability.

791

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anisowicz A., Bardwell L., Sager R. Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7188–7192. doi: 10.1073/pnas.84.20.7188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anisowicz A., Messineo M., Lee S. W., Sager R. An NF-kappa B-like transcription factor mediates IL-1/TNF-alpha induction of gro in human fibroblasts. J Immunol. 1991 Jul 15;147(2):520–527. [PubMed] [Google Scholar]
  3. Baeuerle P. A. The inducible transcription activator NF-kappa B: regulation by distinct protein subunits. Biochim Biophys Acta. 1991 Apr 16;1072(1):63–80. doi: 10.1016/0304-419x(91)90007-8. [DOI] [PubMed] [Google Scholar]
  4. Baker N. E., Kucera G., Richmond A. Nucleotide sequence of the human melanoma growth stimulatory activity (MGSA) gene. Nucleic Acids Res. 1990 Nov 11;18(21):6453–6453. doi: 10.1093/nar/18.21.6453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Balentien E., Han J. H., Thomas H. G., Wen D. Z., Samantha A. K., Zachariae C. O., Griffin P. R., Brachmann R., Wong W. L., Matsushima K. Recombinant expression, biochemical characterization, and biological activities of the human MGSA/gro protein. Biochemistry. 1990 Nov 6;29(44):10225–10233. doi: 10.1021/bi00496a011. [DOI] [PubMed] [Google Scholar]
  6. Balentien E., Mufson B. E., Shattuck R. L., Derynck R., Richmond A. Effects of MGSA/GRO alpha on melanocyte transformation. Oncogene. 1991 Jul;6(7):1115–1124. [PubMed] [Google Scholar]
  7. Ballard D. W., Dixon E. P., Peffer N. J., Bogerd H., Doerre S., Stein B., Greene W. C. The 65-kDa subunit of human NF-kappa B functions as a potent transcriptional activator and a target for v-Rel-mediated repression. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1875–1879. doi: 10.1073/pnas.89.5.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blobel G. A., Hanafusa H. The v-src inducible gene 9E3/pCEF4 is regulated by both its promoter upstream sequence and its 3' untranslated region. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1162–1166. doi: 10.1073/pnas.88.4.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bordoni R., Fine R., Murray D., Richmond A. Characterization of the role of melanoma growth stimulatory activity (MGSA) in the growth of normal melanocytes, nevocytes, and malignant melanocytes. J Cell Biochem. 1990 Dec;44(4):207–219. doi: 10.1002/jcb.240440403. [DOI] [PubMed] [Google Scholar]
  10. Cerami A. Inflammatory cytokines. Clin Immunol Immunopathol. 1992 Jan;62(1 Pt 2):S3–10. doi: 10.1016/0090-1229(92)90035-m. [DOI] [PubMed] [Google Scholar]
  11. Colten H. R. Tissue-specific regulation of inflammation. J Appl Physiol (1985) 1992 Jan;72(1):1–7. doi: 10.1152/jappl.1992.72.1.1. [DOI] [PubMed] [Google Scholar]
  12. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duh E. J., Maury W. J., Folks T. M., Fauci A. S., Rabson A. B. Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5974–5978. doi: 10.1073/pnas.86.15.5974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Evans R., Kamdar S. J., Duffy T. M. Tumor-derived products induce Il-1 a, Il-1 b, Tnf a, and Il-6 gene expression in murine macrophages: distinctions between tumor- and bacterial endotoxin-induced gene expression. J Leukoc Biol. 1991 May;49(5):474–482. doi: 10.1002/jlb.49.5.474. [DOI] [PubMed] [Google Scholar]
  15. Freter R. R., Irminger J. C., Porter J. A., Jones S. D., Stiles C. D. A novel 7-nucleotide motif located in 3' untranslated sequences of the immediate-early gene set mediates platelet-derived growth factor induction of the JE gene. Mol Cell Biol. 1992 Dec;12(12):5288–5300. doi: 10.1128/mcb.12.12.5288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hall D. J., Brownlee C., Stiles C. D. Interleukin-1 is a potent regulator of JE and KC gene expression in quiescent BALB/c fibroblasts. J Cell Physiol. 1989 Oct;141(1):154–159. doi: 10.1002/jcp.1041410123. [DOI] [PubMed] [Google Scholar]
  18. Haskill S., Peace A., Morris J., Sporn S. A., Anisowicz A., Lee S. W., Smith T., Martin G., Ralph P., Sager R. Identification of three related human GRO genes encoding cytokine functions. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7732–7736. doi: 10.1073/pnas.87.19.7732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hazan U., Thomas D., Alcami J., Bachelerie F., Israel N., Yssel H., Virelizier J. L., Arenzana-Seisdedos F. Stimulation of a human T-cell clone with anti-CD3 or tumor necrosis factor induces NF-kappa B translocation but not human immunodeficiency virus 1 enhancer-dependent transcription. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7861–7865. doi: 10.1073/pnas.87.20.7861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jaffe G. J., Peters W. P., Roberts W., Kurtzberg J., Stuart A., Wang A. M., Stoudemire J. B. Modulation of macrophage colony stimulating factor in cultured human retinal pigment epithelial cells. Exp Eye Res. 1992 Apr;54(4):595–603. doi: 10.1016/0014-4835(92)90138-i. [DOI] [PubMed] [Google Scholar]
  21. Jaffe G. J., Richmond A., Van Le L., Shattuck R. L., Cheng Q. C., Wong F., Roberts W. Expression of three forms of melanoma growth stimulating activity (MGSA)/gro in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1993 Aug;34(9):2776–2785. [PubMed] [Google Scholar]
  22. Kamata N., Jotte R. M., Holt J. T. Myristylation alters DNA-binding activity and transactivation of FBR (gag-fos) protein. Mol Cell Biol. 1991 Feb;11(2):765–772. doi: 10.1128/mcb.11.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kowalski J., Denhardt D. T. Regulation of the mRNA for monocyte-derived neutrophil-activating peptide in differentiating HL60 promyelocytes. Mol Cell Biol. 1989 May;9(5):1946–1957. doi: 10.1128/mcb.9.5.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kunsch C., Rosen C. A. NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol. 1993 Oct;13(10):6137–6146. doi: 10.1128/mcb.13.10.6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kunsch C., Ruben S. M., Rosen C. A. Selection of optimal kappa B/Rel DNA-binding motifs: interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. Mol Cell Biol. 1992 Oct;12(10):4412–4421. doi: 10.1128/mcb.12.10.4412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. LeClair K. P., Blanar M. A., Sharp P. A. The p50 subunit of NF-kappa B associates with the NF-IL6 transcription factor. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8145–8149. doi: 10.1073/pnas.89.17.8145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lenardo M. J., Baltimore D. NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell. 1989 Jul 28;58(2):227–229. doi: 10.1016/0092-8674(89)90833-7. [DOI] [PubMed] [Google Scholar]
  28. Leschey K. H., Hackett S. F., Singer J. H., Campochiaro P. A. Growth factor responsiveness of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1990 May;31(5):839–846. [PubMed] [Google Scholar]
  29. Luckow B., Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. doi: 10.1093/nar/15.13.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Magnuson M. A., Quinn P. G., Granner D. K. Multihormonal regulation of phosphoenolpyruvate carboxykinase-chloramphenicol acetyltransferase fusion genes. Insulin's effects oppose those of cAMP and dexamethasone. J Biol Chem. 1987 Nov 5;262(31):14917–14920. [PubMed] [Google Scholar]
  31. Mantovani A., Bussolino F., Dejana E. Cytokine regulation of endothelial cell function. FASEB J. 1992 May;6(8):2591–2599. doi: 10.1096/fasebj.6.8.1592209. [DOI] [PubMed] [Google Scholar]
  32. Molloy R. G., Mannick J. A., Rodrick M. L. Cytokines, sepsis and immunomodulation. Br J Surg. 1993 Mar;80(3):289–297. doi: 10.1002/bjs.1800800308. [DOI] [PubMed] [Google Scholar]
  33. Moser B., Clark-Lewis I., Zwahlen R., Baggiolini M. Neutrophil-activating properties of the melanoma growth-stimulatory activity. J Exp Med. 1990 May 1;171(5):1797–1802. doi: 10.1084/jem.171.5.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moser B., Schumacher C., von Tscharner V., Clark-Lewis I., Baggiolini M. Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide 1/interleukin 8 receptors on human neutrophils. J Biol Chem. 1991 Jun 5;266(16):10666–10671. [PubMed] [Google Scholar]
  35. Mukaida N., Mahe Y., Matsushima K. Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem. 1990 Dec 5;265(34):21128–21133. [PubMed] [Google Scholar]
  36. Narayanan R., Klement J. F., Ruben S. M., Higgins K. A., Rosen C. A. Identification of a naturally occurring transforming variant of the p65 subunit of NF-kappa B. Science. 1992 Apr 17;256(5055):367–370. doi: 10.1126/science.256.5055.367. [DOI] [PubMed] [Google Scholar]
  37. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  38. Pao C. I., Farmer P. K., Begovic S., Goldstein S., Wu G. J., Phillips L. S. Expression of hepatic insulin-like growth factor-I and insulin-like growth factor-binding protein-1 genes is transcriptionally regulated in streptozotocin-diabetic rats. Mol Endocrinol. 1992 Jun;6(6):969–977. doi: 10.1210/mend.6.6.1379675. [DOI] [PubMed] [Google Scholar]
  39. Phares W., Franza B. R., Jr, Herr W. The kappa B enhancer motifs in human immunodeficiency virus type 1 and simian virus 40 recognize different binding activities in human Jurkat and H9 T cells: evidence for NF-kappa B-independent activation of the kappa B motif. J Virol. 1992 Dec;66(12):7490–7498. doi: 10.1128/jvi.66.12.7490-7498.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pierce J. W., Lenardo M., Baltimore D. Oligonucleotide that binds nuclear factor NF-kappa B acts as a lymphoid-specific and inducible enhancer element. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1482–1486. doi: 10.1073/pnas.85.5.1482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Richmond A., Balentien E., Thomas H. G., Flaggs G., Barton D. E., Spiess J., Bordoni R., Francke U., Derynck R. Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta-thromboglobulin. EMBO J. 1988 Jul;7(7):2025–2033. doi: 10.1002/j.1460-2075.1988.tb03042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Richmond A., Lawson D. H., Nixon D. W., Stevens J. S., Chawla R. K. Extraction of a melanoma growth-stimulatory activity from culture medium conditioned by the Hs0294 human melanoma cell line. Cancer Res. 1983 May;43(5):2106–2112. [PubMed] [Google Scholar]
  43. Richmond A., Thomas H. G. Purification of melanoma growth stimulatory activity. J Cell Physiol. 1986 Dec;129(3):375–384. doi: 10.1002/jcp.1041290316. [DOI] [PubMed] [Google Scholar]
  44. Rodeck U., Melber K., Kath R., Menssen H. D., Varello M., Atkinson B., Herlyn M. Constitutive expression of multiple growth factor genes by melanoma cells but not normal melanocytes. J Invest Dermatol. 1991 Jul;97(1):20–26. doi: 10.1111/1523-1747.ep12477822. [DOI] [PubMed] [Google Scholar]
  45. Stein B., Cogswell P. C., Baldwin A. S., Jr Functional and physical associations between NF-kappa B and C/EBP family members: a Rel domain-bZIP interaction. Mol Cell Biol. 1993 Jul;13(7):3964–3974. doi: 10.1128/mcb.13.7.3964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stein B., Rahmsdorf H. J., Steffen A., Litfin M., Herrlich P. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein. Mol Cell Biol. 1989 Nov;9(11):5169–5181. doi: 10.1128/mcb.9.11.5169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stoeckle M. Y., Guan L. High-resolution analysis of gro alpha mRNA poly(A) shortening: regulation by interleukin-1 beta. Nucleic Acids Res. 1993 Apr 11;21(7):1613–1617. doi: 10.1093/nar/21.7.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stoeckle M. Y. Post-transcriptional regulation of gro alpha, beta, gamma, and IL-8 mRNAs by IL-1 beta. Nucleic Acids Res. 1991 Feb 25;19(4):917–920. doi: 10.1093/nar/19.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Stoeckle M. Y. Removal of a 3' non-coding sequence is an initial step in degradation of gro alpha mRNA and is regulated by interleukin-1. Nucleic Acids Res. 1992 Mar 11;20(5):1123–1127. doi: 10.1093/nar/20.5.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tekamp-Olson P., Gallegos C., Bauer D., McClain J., Sherry B., Fabre M., van Deventer S., Cerami A. Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologues. J Exp Med. 1990 Sep 1;172(3):911–919. doi: 10.1084/jem.172.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Walker W. H., Stein B., Ganchi P. A., Hoffman J. A., Kaufman P. A., Ballard D. W., Hannink M., Greene W. C. The v-rel oncogene: insights into the mechanism of transcriptional activation, repression, and transformation. J Virol. 1992 Aug;66(8):5018–5029. doi: 10.1128/jvi.66.8.5018-5029.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Widmer U., Manogue K. R., Cerami A., Sherry B. Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines. J Immunol. 1993 Jun 1;150(11):4996–5012. [PubMed] [Google Scholar]
  53. Yasumoto K., Okamoto S., Mukaida N., Murakami S., Mai M., Matsushima K. Tumor necrosis factor alpha and interferon gamma synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. J Biol Chem. 1992 Nov 5;267(31):22506–22511. [PubMed] [Google Scholar]