Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries (original) (raw)

Abstract

A new and highly effective method, termed suppression subtractive hybridization (SSH), has been developed for the generation of subtracted cDNA libraries. It is based primarily on a recently described technique called suppression PCR and combines normalization and subtraction in a single procedure. The normalization step equalizes the abundance of cDNAs within the target population and the subtraction step excludes the common sequences between the target and driver populations. In a model system, the SSH technique enriched for rare sequences over 1,000-fold in one round of subtractive hybridization. We demonstrate its usefulness by generating a testis-specific cDNA library and by using the subtracted cDNA mixture as a hybridization probe to identify homologous sequences in a human Y chromosome cosmid library. The human DNA inserts in the isolated cosmids were further confirmed to be expressed in a testis-specific manner. These results suggest that the SSH technique is applicable to many molecular genetic and positional cloning studies for the identification of disease, developmental, tissue-specific, or other differentially expressed genes.

6025

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertioli D. J., Schlichter U. H., Adams M. J., Burrows P. R., Steinbiss H. H., Antoniw J. F. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res. 1995 Nov 11;23(21):4520–4523. doi: 10.1093/nar/23.21.4520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davis M. M., Cohen D. I., Nielsen E. A., Steinmetz M., Paul W. E., Hood L. Cell-type-specific cDNA probes and the murine I region: the localization and orientation of Ad alpha. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2194–2198. doi: 10.1073/pnas.81.7.2194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Duguid J. R., Dinauer M. C. Library subtraction of in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucleic Acids Res. 1990 May 11;18(9):2789–2792. doi: 10.1093/nar/18.9.2789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duguid J. R., Rohwer R. G., Seed B. Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5738–5742. doi: 10.1073/pnas.85.15.5738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hara E., Kato T., Nakada S., Sekiya S., Oda K. Subtractive cDNA cloning using oligo(dT)30-latex and PCR: isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells. Nucleic Acids Res. 1991 Dec;19(25):7097–7104. doi: 10.1093/nar/19.25.7097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hedrick S. M., Cohen D. I., Nielsen E. A., Davis M. M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature. 1984 Mar 8;308(5955):149–153. doi: 10.1038/308149a0. [DOI] [PubMed] [Google Scholar]
  7. Hubank M., Schatz D. G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 1994 Dec 25;22(25):5640–5648. doi: 10.1093/nar/22.25.5640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ko M. S. An 'equalized cDNA library' by the reassociation of short double-stranded cDNAs. Nucleic Acids Res. 1990 Oct 11;18(19):5705–5711. doi: 10.1093/nar/18.19.5705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  10. Lisitsyn N., Lisitsyn N., Wigler M. Cloning the differences between two complex genomes. Science. 1993 Feb 12;259(5097):946–951. doi: 10.1126/science.8438152. [DOI] [PubMed] [Google Scholar]
  11. Sargent T. D., Dawid I. B. Differential gene expression in the gastrula of Xenopus laevis. Science. 1983 Oct 14;222(4620):135–139. doi: 10.1126/science.6688681. [DOI] [PubMed] [Google Scholar]
  12. Siebert P. D., Chenchik A., Kellogg D. E., Lukyanov K. A., Lukyanov S. A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995 Mar 25;23(6):1087–1088. doi: 10.1093/nar/23.6.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sompayrac L., Jane S., Burn T. C., Tenen D. G., Danna K. J. Overcoming limitations of the mRNA differential display technique. Nucleic Acids Res. 1995 Nov 25;23(22):4738–4739. doi: 10.1093/nar/23.22.4738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Van Dilla M. A., Deaven L. L. Construction of gene libraries for each human chromosome. Cytometry. 1990;11(1):208–218. doi: 10.1002/cyto.990110124. [DOI] [PubMed] [Google Scholar]
  15. Wang Z., Brown D. D. A gene expression screen. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11505–11509. doi: 10.1073/pnas.88.24.11505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Welsh J., Chada K., Dalal S. S., Cheng R., Ralph D., McClelland M. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 1992 Oct 11;20(19):4965–4970. doi: 10.1093/nar/20.19.4965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zhang J. S., Yang-Feng T. L., Muller U., Mohandas T. K., de Jong P. J., Lau Y. F. Molecular isolation and characterization of an expressed gene from the human Y chromosome. Hum Mol Genet. 1992 Dec;1(9):717–726. doi: 10.1093/hmg/1.9.717. [DOI] [PubMed] [Google Scholar]