Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis (original) (raw)

Abstract

Adenylate cyclase in purified membranes from rat adipocytes is inhibited by low concentrations of purine-modified adenosine analogs, particularly those modified in the N6 position. Such inhibition is antagonized competitively by methylxanthines, but not by other cyclic nucleotide phosphodiesterase inhibitors, and it is dependent on "inhibitory" concentrations of GTP in the assay medium. Ribose-modified adenosine analogs inhibit adenylate cyclase through a process that is neither dependent upon the GTP concentration nor antagonized by methylxanthines. These results explain the potent effects of adenosine and methylxanthines on fat cell metabolism and demonstrate the importance of GTP in mediating inhibition by agents that act at cell surface receptors.

5362

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avruch J., Wallach D. F. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta. 1971 Apr 13;233(2):334–347. doi: 10.1016/0005-2736(71)90331-2. [DOI] [PubMed] [Google Scholar]
  2. Birnbaumer L., Nakahara T., Yang P. C. Studies on receptor-mediated activation of adenylyl cyclases. II. Nucleotide and nucleoside regulation of the activities of the beef renal medullary adenylyl cyclase and their stimulation by neurohypophyseal hormones. J Biol Chem. 1974 Dec 25;249(24):7857–7866. [PubMed] [Google Scholar]
  3. Blume A. J., Foster C. J. Mouse neuroblastoma adenylate cyclase. Adenosine and adenosine analogues as potent effectors of adenylate cyclase activity. J Biol Chem. 1975 Jul 10;250(13):5003–5008. [PubMed] [Google Scholar]
  4. Butcher R. W., Baird C. E., Sutherland E. W. Effects of lipolytic and antilipolytic substances on adenosine 3',5'-monophosphate levels in isolated fat cells. J Biol Chem. 1968 Apr 25;243(8):1705–1712. [PubMed] [Google Scholar]
  5. Clark R. B., Gross R., Su Y. F., Perkins J. P. Regulation of adenosine 3':5'-monophosphate content in human astrocytoma cells by adenosine and the adenine nucleotides. J Biol Chem. 1974 Aug 25;249(16):5296–5303. [PubMed] [Google Scholar]
  6. Clark R. B., Seney M. N. Regulation of adenylate cyclase from cultured human cell lines by adenosine. J Biol Chem. 1976 Jul 25;251(14):4239–4246. [PubMed] [Google Scholar]
  7. Ebert R., Schwabe U. Studies on the antilipolytic effect of adenosine and related compounds in isolated fat cells. Naunyn Schmiedebergs Arch Pharmacol. 1973;278(3):247–259. doi: 10.1007/BF00500286. [DOI] [PubMed] [Google Scholar]
  8. Fain J. N. Biochemical aspects of drug and hormone action on adipose tissue. Pharmacol Rev. 1973 Mar;25(1):67–118. [PubMed] [Google Scholar]
  9. Fain J. N. Inhibition of adenosine cyclic 3', 5'-monophosphate accumulation in fat cells by adenosine, N6-(phenylisopropyl) adenosine, and related compounds. Mol Pharmacol. 1973 Sep;9(5):595–604. [PubMed] [Google Scholar]
  10. Fain J. N., Pointer R. H., Ward W. F. Effects of adenosine nucleosides on adenylate cyclase, phosphodiesterase, cyclic adenosine monophosphate accumulation, and lipolysis in fat cells. J Biol Chem. 1972 Nov 10;247(21):6866–6872. [PubMed] [Google Scholar]
  11. Fain J. N., Wieser P. B. Effects of adenosine deaminase on cyclic adenosine monophosphate accumulation, lipolysis, and glucose metabolism of fat cells. J Biol Chem. 1975 Feb 10;250(3):1027–1034. [PubMed] [Google Scholar]
  12. Green R. D., Stanberry L. R. Elevation of cyclic AMP in C-1300 murine neuroblastoma by adenosine and related compounds and the antagonism of this response by methylxanthines. Biochem Pharmacol. 1977 Jan 1;26(1):37–43. doi: 10.1016/0006-2952(77)90127-7. [DOI] [PubMed] [Google Scholar]
  13. Harwood J. P., Löw H., Rodbell M. Stimulatory and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase. J Biol Chem. 1973 Sep 10;248(17):6239–6245. [PubMed] [Google Scholar]
  14. Haslam R. J., Lynham J. A. Activation and inhibition of blood platelet adenylate cyclase by adenosine or by 2-chloroadenosine. Life Sci II. 1972 Dec 8;11(23):1143–1154. doi: 10.1016/0024-3205(72)90269-x. [DOI] [PubMed] [Google Scholar]
  15. Haslam R. J., Rosson G. M. Effects of adenosine on levels of adenosine cyclic 3',5'-monophosphate in human blood platelets in relation to adenosine incorporation and platelet aggregation. Mol Pharmacol. 1975 Sep;11(5):528–544. [PubMed] [Google Scholar]
  16. Huang M., Drummond G. I. Effect of adenosine on cyclic AMP accumulation in ventricular myocardium. Biochem Pharmacol. 1976 Dec 15;25(24):2713–2719. doi: 10.1016/0006-2952(76)90262-8. [DOI] [PubMed] [Google Scholar]
  17. Huang M., Shimizu H., Daly J. W. Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effects of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors, and adenosine analogs. J Med Chem. 1972 May;15(5):462–466. doi: 10.1021/jm00275a005. [DOI] [PubMed] [Google Scholar]
  18. Iizuka H., Adachi K., Halprin K. M., Levine V. Adenosine and adenine nucleotides stimulation of skin (epidermal) adenylate cyclase. Biochim Biophys Acta. 1976 Oct 22;444(3):685–693. doi: 10.1016/0304-4165(76)90315-9. [DOI] [PubMed] [Google Scholar]
  19. Kimura N., Nakane K., Nagata N. Activation by GTP of liver adenylate cyclase in the presence of high concentrations of ATP. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1250–1256. doi: 10.1016/0006-291x(76)91036-6. [DOI] [PubMed] [Google Scholar]
  20. Londos C., Salomon Y., Lin M. C., Harwood J. P., Schramm M., Wolff J., Rodbell M. 5'-Guanylylimidodiphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3087–3090. doi: 10.1073/pnas.71.8.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Londos C., Wolff J. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5482–5486. doi: 10.1073/pnas.74.12.5482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maguire M. E., Sturgill T. W., Anderson H. J., Minna J. D., Gilman A. G. Hormonal control of cyclic AMP metabolism in parental and hybrid somatic cells. Adv Cyclic Nucleotide Res. 1975;5:699–718. [PubMed] [Google Scholar]
  23. Narayanan N., Sulakhe P. V. Stimulatory and inhibitory effects of guanyl-5'-yl imidodiphosphate on adenylate cyclase activity of cardiac sarcolemma. Arch Biochem Biophys. 1978 Jan 15;185(1):72–81. doi: 10.1016/0003-9861(78)90145-5. [DOI] [PubMed] [Google Scholar]
  24. Peck W. A., Carpenter J., Messinger K. Cyclic 3',5'-adenosine monophosphate in isolated bone cells. II. Responses to adenosine and parathyroid hormone. Endocrinology. 1974 Jan;94(1):148–154. doi: 10.1210/endo-94-1-148. [DOI] [PubMed] [Google Scholar]
  25. Penit J., Huot J., Jard S. Neuroblastoma cell adenylate cyclase: direct activation by adenosine and prostaglandins. J Neurochem. 1976 Feb;26(2):265–273. doi: 10.1111/j.1471-4159.1976.tb04475.x. [DOI] [PubMed] [Google Scholar]
  26. Prémont J., Perez M., Bockaert J. Adenosine-sensitive adenylate cyclase in rat striatal homogenates and its relationship to dopamine- and Ca2+-sensitive adenylate cyclases. Mol Pharmacol. 1977 Jul;13(4):662–670. [PubMed] [Google Scholar]
  27. Rodbell M. On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides. An explanation for the biphasic inhibitory and stimulatory effects of the nucleotides and the role of hormones. J Biol Chem. 1975 Aug 10;250(15):5826–5834. [PubMed] [Google Scholar]
  28. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  29. Sattin A., Rall T. W. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970 Jan;6(1):13–23. [PubMed] [Google Scholar]
  30. Schwabe U., Ebert R., Erbler H. C. Adenosine release from isolated fat cells and its significance for the effects of hormones on cyclic 3',5'-AMP levels and lipolysis. Naunyn Schmiedebergs Arch Pharmacol. 1973;276(2):133–148. doi: 10.1007/BF00501186. [DOI] [PubMed] [Google Scholar]
  31. Sevilla N., Tolkovsky A. M., Levitzki A. Activation of turkey erythrocyte adenylate cyclase by two receptors: adenosine and catecholamines. FEBS Lett. 1977 Sep 15;81(2):339–341. doi: 10.1016/0014-5793(77)80549-8. [DOI] [PubMed] [Google Scholar]
  32. Tell G. P., Pasternak G. W., Cuatrecasas P. Brain and caudate nucleus adenylate cyclase: effects of dopamine, GTP, E prostaglandins and morphine. FEBS Lett. 1975 Mar 1;51(1):242–245. doi: 10.1016/0014-5793(75)80896-9. [DOI] [PubMed] [Google Scholar]
  33. Trost T., Stock K. Effects of adenosine derivatives on cAMP accumulation and lipolysis in rat adipocytes and on adenylate cyclase in adipocyte plasma membranes. Naunyn Schmiedebergs Arch Pharmacol. 1977 Aug;299(1):33–40. doi: 10.1007/BF00508634. [DOI] [PubMed] [Google Scholar]
  34. Wilkening D., Makman M. H. 2-Chloroadenosine-dependent elevation of adenosine 3',5'-cyclic monophosphate levels in rat caudate nucleus slices. Brain Res. 1975 Jul 18;92(3):522–528. doi: 10.1016/0006-8993(75)90341-8. [DOI] [PubMed] [Google Scholar]
  35. Wolff J., Cook G. H. Activation of steroidogenesis and adenylate cyclase by adenosine in adrenal and Leydig tumor cells. J Biol Chem. 1977 Jan 25;252(2):687–693. [PubMed] [Google Scholar]
  36. Yamamura H., Lad P. M., Rodbell M. GTP stimulates and inhibits adenylate cyclase in fat cell membranes through distinct regulatory processes. J Biol Chem. 1977 Nov 25;252(22):7964–7966. [PubMed] [Google Scholar]
  37. Yamamura H., Rodbell M. Hydroxybenzylpindolol and hydroxybenzylpropranolol: partial beta adrenergic agonists of adenylate cyclase in the rat adipocyte. Mol Pharmacol. 1976 Sep;12(5):693–700. [PubMed] [Google Scholar]