Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein (original) (raw)

Abstract

We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses. Site-directed mutations of these motifs in CD44 sequences abolished HA binding. Collectively, these results predict that the motif of B(X7)B as a minimal binding requirement for HA in RHAMM, CD44 and link protein, and occurs in all HA binding proteins described to date.

286

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Culty M., Miyake K., Kincade P. W., Sikorski E., Butcher E. C., Underhill C., Silorski E. The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol. 1990 Dec;111(6 Pt 1):2765–2774. doi: 10.1083/jcb.111.6.2765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Deák F., Kiss I., Sparks K. J., Argraves W. S., Hampikian G., Goetinck P. F. Complete amino acid sequence of chicken cartilage link protein deduced from cDNA clones. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3766–3770. doi: 10.1073/pnas.83.11.3766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doege K. J., Sasaki M., Kimura T., Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem. 1991 Jan 15;266(2):894–902. [PubMed] [Google Scholar]
  4. Doege K., Sasaki M., Horigan E., Hassell J. R., Yamada Y. Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J Biol Chem. 1987 Dec 25;262(36):17757–17767. [PubMed] [Google Scholar]
  5. Eaton D., Rodriguez H., Vehar G. A. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry. 1986 Jan 28;25(2):505–512. doi: 10.1021/bi00350a035. [DOI] [PubMed] [Google Scholar]
  6. Ferran D. S., Sobel M., Harris R. B. Design and synthesis of a helix heparin-binding peptide. Biochemistry. 1992 Jun 2;31(21):5010–5016. doi: 10.1021/bi00136a014. [DOI] [PubMed] [Google Scholar]
  7. Fosang A. J., Hardingham T. E. Isolation of the N-terminal globular protein domains from cartilage proteoglycans. Identification of G2 domain and its lack of interaction with hyaluronate and link protein. Biochem J. 1989 Aug 1;261(3):801–809. doi: 10.1042/bj2610801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goetinck P. F., Stirpe N. S., Tsonis P. A., Carlone D. The tandemly repeated sequences of cartilage link protein contain the sites for interaction with hyaluronic acid. J Cell Biol. 1987 Nov;105(5):2403–2408. doi: 10.1083/jcb.105.5.2403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Günthert U., Hofmann M., Rudy W., Reber S., Zöller M., Haussmann I., Matzku S., Wenzel A., Ponta H., Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991 Apr 5;65(1):13–24. doi: 10.1016/0092-8674(91)90403-l. [DOI] [PubMed] [Google Scholar]
  10. Jackson D. G., Buckley J., Bell J. I. Multiple variants of the human lymphocyte homing receptor CD44 generated by insertions at a single site in the extracellular domain. J Biol Chem. 1992 Mar 5;267(7):4732–4739. [PubMed] [Google Scholar]
  11. Kimata K., Hascall V. C., Kimura J. H. Mechanisms for dissociating proteoglycan aggregates. J Biol Chem. 1982 Apr 10;257(7):3827–3832. [PubMed] [Google Scholar]
  12. Lansing M., Lellig S., Mausolf A., Martini I., Crescenzi F., O'Regan M., Prehm P. Hyaluronate synthase: cloning and sequencing of the gene from Streptococcus sp. Biochem J. 1993 Jan 1;289(Pt 1):179–184. doi: 10.1042/bj2890179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laurent T. C., Fraser J. R. Hyaluronan. FASEB J. 1992 Apr;6(7):2397–2404. [PubMed] [Google Scholar]
  14. Lee T. H., Wisniewski H. G., Vilcek J. A novel secretory tumor necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins, closely related to the adhesion receptor CD44. J Cell Biol. 1992 Jan;116(2):545–557. doi: 10.1083/jcb.116.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lesley J., He Q., Miyake K., Hamann A., Hyman R., Kincade P. W. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J Exp Med. 1992 Jan 1;175(1):257–266. doi: 10.1084/jem.175.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lyon M. Specific chemical modifications of link protein and their effect on binding to hyaluronate and cartilage proteoglycan. Biochim Biophys Acta. 1986 Mar 19;881(1):22–29. doi: 10.1016/0304-4165(86)90092-9. [DOI] [PubMed] [Google Scholar]
  17. McDevitt C. A., Marcelino J., Tucker L. Interaction of intact type VI collagen with hyaluronan. FEBS Lett. 1991 Dec 9;294(3):167–170. doi: 10.1016/0014-5793(91)80660-u. [DOI] [PubMed] [Google Scholar]
  18. Murakami S., Miyake K., June C. H., Kincade P. W., Hodes R. J. IL-5 induces a Pgp-1 (CD44) bright B cell subpopulation that is highly enriched in proliferative and Ig secretory activity and binds to hyaluronate. J Immunol. 1990 Dec 1;145(11):3618–3627. [PubMed] [Google Scholar]
  19. Peach R. J., Hollenbaugh D., Stamenkovic I., Aruffo A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol. 1993 Jul;122(1):257–264. doi: 10.1083/jcb.122.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perides G., Lane W. S., Andrews D., Dahl D., Bignami A. Isolation and partial characterization of a glial hyaluronate-binding protein. J Biol Chem. 1989 Apr 5;264(10):5981–5987. [PubMed] [Google Scholar]
  21. Ruoslahti E., Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991 Mar 8;64(5):867–869. doi: 10.1016/0092-8674(91)90308-l. [DOI] [PubMed] [Google Scholar]
  22. Schnaper H. W., Kleinman H. K., Grant D. S. Role of laminin in endothelial cell recognition and differentiation. Kidney Int. 1993 Jan;43(1):20–25. doi: 10.1038/ki.1993.5. [DOI] [PubMed] [Google Scholar]
  23. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  24. Sobel M., Soler D. F., Kermode J. C., Harris R. B. Localization and characterization of a heparin binding domain peptide of human von Willebrand factor. J Biol Chem. 1992 May 5;267(13):8857–8862. [PubMed] [Google Scholar]
  25. Stamenkovic I., Amiot M., Pesando J. M., Seed B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell. 1989 Mar 24;56(6):1057–1062. doi: 10.1016/0092-8674(89)90638-7. [DOI] [PubMed] [Google Scholar]
  26. Stamenkovic I., Aruffo A., Amiot M., Seed B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J. 1991 Feb;10(2):343–348. doi: 10.1002/j.1460-2075.1991.tb07955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tengblad A. A comparative study of the binding of cartilage link protein and the hyaluronate-binding region of the cartilage proteoglycan to hyaluronate-substituted Sepharose gel. Biochem J. 1981 Nov 1;199(2):297–305. doi: 10.1042/bj1990297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Timmons T. M., Dunbar B. S. Protein blotting and immunodetection. Methods Enzymol. 1990;182:679–688. doi: 10.1016/0076-6879(90)82053-5. [DOI] [PubMed] [Google Scholar]
  29. Toole B. P. Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol. 1990 Oct;2(5):839–844. doi: 10.1016/0955-0674(90)90081-o. [DOI] [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Turley E. A., Austen L., Vandeligt K., Clary C. Hyaluronan and a cell-associated hyaluronan binding protein regulate the locomotion of ras-transformed cells. J Cell Biol. 1991 Mar;112(5):1041–1047. doi: 10.1083/jcb.112.5.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Turley E. A. Hyaluronan and cell locomotion. Cancer Metastasis Rev. 1992 Mar;11(1):21–30. doi: 10.1007/BF00047600. [DOI] [PubMed] [Google Scholar]
  33. Turley E. A., Moore D., Hayden L. J. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells. Biochemistry. 1987 Jun 2;26(11):2997–3005. doi: 10.1021/bi00385a007. [DOI] [PubMed] [Google Scholar]
  34. Underhill C. B., Green S. J., Comoglio P. M., Tarone G. The hyaluronate receptor is identical to a glycoprotein of Mr 85,000 (gp85) as shown by a monoclonal antibody that interferes with binding activity. J Biol Chem. 1987 Sep 25;262(27):13142–13146. [PubMed] [Google Scholar]
  35. Underhill C. B., Thurn A. L., Lacy B. E. Characterization and identification of the hyaluronate binding site from membranes of SV-3T3 cells. J Biol Chem. 1985 Jul 5;260(13):8128–8133. [PubMed] [Google Scholar]
  36. Wilke M. S., Skubitz A. P., Furcht L. T., McCarthy J. B. Human keratinocytes adhere to two distinct heparin-binding synthetic peptides derived from fibronectin. J Invest Dermatol. 1991 Sep;97(3):573–579. doi: 10.1111/1523-1747.ep12481915. [DOI] [PubMed] [Google Scholar]
  37. Wirtz M. K., Rao V. H., Glanville R. W., Labhard M. E., Pretorius P. J., de Vries W. N., de Wet W. J., Hollister D. W. A cysteine for glycine substitution at position 175 in an alpha 1 (I) chain of type I collagen produces a clinically heterogeneous form of osteogenesis imperfecta. Connect Tissue Res. 1993;29(1):1–11. doi: 10.3109/03008209309061961. [DOI] [PubMed] [Google Scholar]
  38. Yang B., Zhang L., Turley E. A. Identification of two hyaluronan-binding domains in the hyaluronan receptor RHAMM. J Biol Chem. 1993 Apr 25;268(12):8617–8623. [PubMed] [Google Scholar]
  39. Zhu X., Komiya H., Chirino A., Faham S., Fox G. M., Arakawa T., Hsu B. T., Rees D. C. Three-dimensional structures of acidic and basic fibroblast growth factors. Science. 1991 Jan 4;251(4989):90–93. doi: 10.1126/science.1702556. [DOI] [PubMed] [Google Scholar]
  40. Zimmermann D. R., Ruoslahti E. Multiple domains of the large fibroblast proteoglycan, versican. EMBO J. 1989 Oct;8(10):2975–2981. doi: 10.1002/j.1460-2075.1989.tb08447.x. [DOI] [PMC free article] [PubMed] [Google Scholar]