Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life (original) (raw)

Abstract

A symbiosis-based phylogeny leads to a consistent, useful classification system for all life. "Kingdoms" and "Domains" are replaced by biological names for the most inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis-derived nucleated organisms). The earliest Eukarya, anaerobic mastigotes, hypothetically originated from permanent whole-cell fusion between members of Archaea (e.g., Thermoplasma-like organisms) and of Eubacteria (e.g., Spirochaeta-like organisms). Molecular biology, life-history, and fossil record evidence support the reunification of bacteria as Prokarya while subdividing Eukarya into uniquely defined subtaxa: Protoctista, Animalia, Fungi, and Plantae.

1071

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. R., Doolittle W. F. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2441–2445. doi: 10.1073/pnas.92.7.2441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bryant M. P., Wolin E. A., Wolin M. J., Wolfe R. S. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol. 1967;59(1):20–31. doi: 10.1007/BF00406313. [DOI] [PubMed] [Google Scholar]
  3. Cavalier-Smith T. Eukaryotes with no mitochondria. 1987 Mar 26-Apr 1Nature. 326(6111):332–333. doi: 10.1038/326332a0. [DOI] [PubMed] [Google Scholar]
  4. Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993 Dec;57(4):953–994. doi: 10.1128/mr.57.4.953-994.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cleveland L. R. The Origin and Evolution of Meiosis. Science. 1947 Mar 14;105(2724):287–289. doi: 10.1126/science.105.2724.287. [DOI] [PubMed] [Google Scholar]
  6. Fuerst J. A., Webb R. I. Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8184–8188. doi: 10.1073/pnas.88.18.8184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Golding G. B., Gupta R. S. Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol. 1995 Jan;12(1):1–6. doi: 10.1093/oxfordjournals.molbev.a040178. [DOI] [PubMed] [Google Scholar]
  8. Guerrero R., Ashen J., Sole M., Margulis L. Spirosymplokos deltaeiberi nov. gen., nov. sp.: variable-diameter composite spirochete from microbial mats. Arch Microbiol. 1993;160:461–470. doi: 10.1007/BF00245307. [DOI] [PubMed] [Google Scholar]
  9. Gunderson J., Hinkle G., Leipe D., Morrison H. G., Stickel S. K., Odelson D. A., Breznak J. A., Nerad T. A., Müller M., Sogin M. L. Phylogeny of trichomonads inferred from small-subunit rRNA sequences. J Eukaryot Microbiol. 1995 Jul-Aug;42(4):411–415. doi: 10.1111/j.1550-7408.1995.tb01604.x. [DOI] [PubMed] [Google Scholar]
  10. Gupta R. S., Aitken K., Falah M., Singh B. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2895–2899. doi: 10.1073/pnas.91.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hall J. L., Luck D. J. Basal body-associated DNA: in situ studies in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5129–5133. doi: 10.1073/pnas.92.11.5129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall J. L., Ramanis Z., Luck D. J. Basal body/centriolar DNA: molecular genetic studies in Chlamydomonas. Cell. 1989 Oct 6;59(1):121–132. doi: 10.1016/0092-8674(89)90875-1. [DOI] [PubMed] [Google Scholar]
  13. Hensel R., Zwickl P., Fabry S., Lang J., Palm P. Sequence comparison of glyceraldehyde-3-phosphate dehydrogenases from the three urkingdoms: evolutionary implication. Can J Microbiol. 1989 Jan;35(1):81–85. doi: 10.1139/m89-012. [DOI] [PubMed] [Google Scholar]
  14. Kirby H., Margulis L. Harold Kirby's symbionts of termites: karyomastigont reproduction and calonymphid taxonomy. Symbiosis. 1994;16(1):7–63. [PubMed] [Google Scholar]
  15. Korolev E. V., Nikonov A. V., Brudnaya M. S., Snigirevskaya E. S., Sabinin G. V., Komissarchik YYu, Ivanov P. I., Borchsenius S. N. Tubular structures of Mycoplasma gallisepticum and their possible participation in cell motility. Microbiology. 1994 Mar;140(Pt 3):671–681. doi: 10.1099/00221287-140-3-671. [DOI] [PubMed] [Google Scholar]
  16. Sogin M. L. Early evolution and the origin of eukaryotes. Curr Opin Genet Dev. 1991 Dec;1(4):457–463. doi: 10.1016/s0959-437x(05)80192-3. [DOI] [PubMed] [Google Scholar]
  17. WHITTAKER R. H. On the broad classification of organisms. Q Rev Biol. 1959 Sep;34:210–226. doi: 10.1086/402733. [DOI] [PubMed] [Google Scholar]
  18. Whittaker R. H. New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science. 1969 Jan 10;163(3863):150–160. doi: 10.1126/science.163.3863.150. [DOI] [PubMed] [Google Scholar]
  19. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]