Interactions of protein antigens with antibodies (original) (raw)

Abstract

There are now several crystal structures of antibody Fab fragments complexed to their protein antigens. These include Fab complexes with lysozyme, two Fab complexes with influenza virus neuraminidase, and three Fab complexes with their anti-idiotype Fabs. The pattern of binding that emerges is similar to that found with other protein-protein interactions, with good shape complementarity between the interacting surfaces and reasonable juxtapositions of polar residues so as to permit hydrogen-bond formation. Water molecules have been observed in cavities within the interface and on the periphery, where they often form bridging hydrogen bonds between antibody and antigen. For the most part the antigen is bound in the middle of the antibody combining site with most of the six complementarity-determining residues involved in binding. For the most studied antigen, lysozyme, the epitopes for four antibodies occupy approximately 45% of the accessible surface area. Some conformational changes have been observed to accompany binding in both the antibody and the antigen, although most of the information on conformational change in the latter comes from studies of complexes with small antigens.

7

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science. 1986 Aug 15;233(4765):747–753. doi: 10.1126/science.2426778. [DOI] [PubMed] [Google Scholar]
  2. Ban N., Escobar C., Garcia R., Hasel K., Day J., Greenwood A., McPherson A. Crystal structure of an idiotype-anti-idiotype Fab complex. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1604–1608. doi: 10.1073/pnas.91.5.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benjamin D. C., Williams D. C., Jr, Smith-Gill S. J., Rule G. S. Long-range changes in a protein antigen due to antigen-antibody interaction. Biochemistry. 1992 Oct 13;31(40):9539–9545. doi: 10.1021/bi00155a005. [DOI] [PubMed] [Google Scholar]
  4. Bentley G. A., Boulot G., Riottot M. M., Poljak R. J. Three-dimensional structure of an idiotope-anti-idiotope complex. Nature. 1990 Nov 15;348(6298):254–257. doi: 10.1038/348254a0. [DOI] [PubMed] [Google Scholar]
  5. Bhat T. N., Bentley G. A., Boulot G., Greene M. I., Tello D., Dall'Acqua W., Souchon H., Schwarz F. P., Mariuzza R. A., Poljak R. J. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1089–1093. doi: 10.1073/pnas.91.3.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bhat T. N., Bentley G. A., Fischmann T. O., Boulot G., Poljak R. J. Small rearrangements in structures of Fv and Fab fragments of antibody D1.3 on antigen binding. Nature. 1990 Oct 4;347(6292):483–485. doi: 10.1038/347483a0. [DOI] [PubMed] [Google Scholar]
  7. Braden B. C., Poljak R. J. Structural features of the reactions between antibodies and protein antigens. FASEB J. 1995 Jan;9(1):9–16. doi: 10.1096/fasebj.9.1.7821765. [DOI] [PubMed] [Google Scholar]
  8. Braden B. C., Souchon H., Eiselé J. L., Bentley G. A., Bhat T. N., Navaza J., Poljak R. J. Three-dimensional structures of the free and the antigen-complexed Fab from monoclonal anti-lysozyme antibody D44.1. J Mol Biol. 1994 Nov 4;243(4):767–781. doi: 10.1016/0022-2836(94)90046-9. [DOI] [PubMed] [Google Scholar]
  9. Chacko S., Silverton E., Kam-Morgan L., Smith-Gill S., Cohen G., Davies D. Structure of an antibody-lysozyme complex unexpected effect of conservative mutation. J Mol Biol. 1995 Jan 20;245(3):261–274. doi: 10.1006/jmbi.1994.0022. [DOI] [PubMed] [Google Scholar]
  10. Chitarra V., Alzari P. M., Bentley G. A., Bhat T. N., Eiselé J. L., Houdusse A., Lescar J., Souchon H., Poljak R. J. Three-dimensional structure of a heteroclitic antigen-antibody cross-reaction complex. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7711–7715. doi: 10.1073/pnas.90.16.7711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clackson T., Wells J. A. A hot spot of binding energy in a hormone-receptor interface. Science. 1995 Jan 20;267(5196):383–386. doi: 10.1126/science.7529940. [DOI] [PubMed] [Google Scholar]
  12. Colman P. M. Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci. 1994 Oct;3(10):1687–1696. doi: 10.1002/pro.5560031007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Colman P. M., Laver W. G., Varghese J. N., Baker A. T., Tulloch P. A., Air G. M., Webster R. G. Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. 1987 Mar 26-Apr 1Nature. 326(6111):358–363. doi: 10.1038/326358a0. [DOI] [PubMed] [Google Scholar]
  14. Cunningham B. C., Wells J. A. Comparison of a structural and a functional epitope. J Mol Biol. 1993 Dec 5;234(3):554–563. doi: 10.1006/jmbi.1993.1611. [DOI] [PubMed] [Google Scholar]
  15. Davies D. R., Padlan E. A., Sheriff S. Antibody-antigen complexes. Annu Rev Biochem. 1990;59:439–473. doi: 10.1146/annurev.bi.59.070190.002255. [DOI] [PubMed] [Google Scholar]
  16. Davies D. R., Padlan E. A. Twisting into shape. Curr Biol. 1992 May;2(5):254–256. doi: 10.1016/0960-9822(92)90369-l. [DOI] [PubMed] [Google Scholar]
  17. Evans S. V., Rose D. R., To R., Young N. M., Bundle D. R. Exploring the mimicry of polysaccharide antigens by anti-idiotypic antibodies. The crystallization, molecular replacement, and refinement to 2.8 A resolution of an idiotope-anti-idiotope Fab complex and of the unliganded anti-idiotope Fab. J Mol Biol. 1994 Sep 2;241(5):691–705. doi: 10.1006/jmbi.1994.1544. [DOI] [PubMed] [Google Scholar]
  18. Fischmann T. O., Bentley G. A., Bhat T. N., Boulot G., Mariuzza R. A., Phillips S. E., Tello D., Poljak R. J. Crystallographic refinement of the three-dimensional structure of the FabD1.3-lysozyme complex at 2.5-A resolution. J Biol Chem. 1991 Jul 15;266(20):12915–12920. [PubMed] [Google Scholar]
  19. Garcia K. C., Ronco P. M., Verroust P. J., Brünger A. T., Amzel L. M. Three-dimensional structure of an angiotensin II-Fab complex at 3 A: hormone recognition by an anti-idiotypic antibody. Science. 1992 Jul 24;257(5069):502–507. doi: 10.1126/science.1636085. [DOI] [PubMed] [Google Scholar]
  20. Gaulton G. N., Greene M. I. Idiotypic mimicry of biological receptors. Annu Rev Immunol. 1986;4:253–280. doi: 10.1146/annurev.iy.04.040186.001345. [DOI] [PubMed] [Google Scholar]
  21. Harata K. X-ray structure of a monoclinic form of hen egg-white lysozyme crystallized at 313 K. Comparison of two independent molecules. Acta Crystallogr D Biol Crystallogr. 1994 May 1;50(Pt 3):250–257. doi: 10.1107/S0907444993013290. [DOI] [PubMed] [Google Scholar]
  22. Hibbits K. A., Gill D. S., Willson R. C. Isothermal titration calorimetric study of the association of hen egg lysozyme and the anti-lysozyme antibody HyHEL-5. Biochemistry. 1994 Mar 29;33(12):3584–3590. doi: 10.1021/bi00178a015. [DOI] [PubMed] [Google Scholar]
  23. Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
  24. Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
  25. Jerne N. K. Towards a network theory of the immune system. Ann Immunol (Paris) 1974 Jan;125C(1-2):373–389. [PubMed] [Google Scholar]
  26. Jones S., Thornton J. M. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):13–20. doi: 10.1073/pnas.93.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kabat E. A., Wu T. T., Bilofsky H. Unusual distributions of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody-combining sites. J Biol Chem. 1977 Oct 10;252(19):6609–6616. [PubMed] [Google Scholar]
  28. Klevit R. E., Waygood E. B. Two-dimensional 1H NMR studies of histidine-containing protein from Escherichia coli. 3. Secondary and tertiary structure as determined by NMR. Biochemistry. 1986 Nov 18;25(23):7774–7781. doi: 10.1021/bi00371a073. [DOI] [PubMed] [Google Scholar]
  29. Kurinov I. V., Harrison R. W. The influence of temperature on lysozyme crystals. Structure and dynamics of protein and water. Acta Crystallogr D Biol Crystallogr. 1995 Jan 1;51(Pt 1):98–109. doi: 10.1107/S0907444994009261. [DOI] [PubMed] [Google Scholar]
  30. Lea S., Stuart D. Analysis of antigenic surfaces of proteins. FASEB J. 1995 Jan;9(1):87–93. doi: 10.1096/fasebj.9.1.7821764. [DOI] [PubMed] [Google Scholar]
  31. Malby R. L., Tulip W. R., Harley V. R., McKimm-Breschkin J. L., Laver W. G., Webster R. G., Colman P. M. The structure of a complex between the NC10 antibody and influenza virus neuraminidase and comparison with the overlapping binding site of the NC41 antibody. Structure. 1994 Aug 15;2(8):733–746. doi: 10.1016/s0969-2126(00)00074-5. [DOI] [PubMed] [Google Scholar]
  32. Mian I. S., Bradwell A. R., Olson A. J. Structure, function and properties of antibody binding sites. J Mol Biol. 1991 Jan 5;217(1):133–151. doi: 10.1016/0022-2836(91)90617-f. [DOI] [PubMed] [Google Scholar]
  33. Mylvaganam S. E., Paterson Y., Kaiser K., Bowdish K., Getzoff E. D. Biochemical implications from the variable gene sequences of an anti-cytochrome c antibody and crystallographic characterization of its antigen-binding fragment in free and antigen-complexed forms. J Mol Biol. 1991 Sep 20;221(2):455–462. doi: 10.1016/0022-2836(91)80066-4. [DOI] [PubMed] [Google Scholar]
  34. Newman M. A., Mainhart C. R., Mallett C. P., Lavoie T. B., Smith-Gill S. J. Patterns of antibody specificity during the BALB/c immune response to hen eggwhite lysozyme. J Immunol. 1992 Nov 15;149(10):3260–3272. [PubMed] [Google Scholar]
  35. Padlan E. A. Anatomy of the antibody molecule. Mol Immunol. 1994 Feb;31(3):169–217. doi: 10.1016/0161-5890(94)90001-9. [DOI] [PubMed] [Google Scholar]
  36. Padlan E. A. On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins. 1990;7(2):112–124. doi: 10.1002/prot.340070203. [DOI] [PubMed] [Google Scholar]
  37. Padlan E. A., Silverton E. W., Sheriff S., Cohen G. H., Smith-Gill S. J., Davies D. R. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5938–5942. doi: 10.1073/pnas.86.15.5938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pan Y., Yuhasz S. C., Amzel L. M. Anti-idiotypic antibodies: biological function and structural studies. FASEB J. 1995 Jan;9(1):43–49. doi: 10.1096/fasebj.9.1.7821758. [DOI] [PubMed] [Google Scholar]
  39. Paterson Y., Englander S. W., Roder H. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science. 1990 Aug 17;249(4970):755–759. doi: 10.1126/science.1697101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Prasad L., Sharma S., Vandonselaar M., Quail J. W., Lee J. S., Waygood E. B., Wilson K. S., Dauter Z., Delbaere L. T. Evaluation of mutagenesis for epitope mapping. Structure of an antibody-protein antigen complex. J Biol Chem. 1993 May 25;268(15):10705–10708. [PubMed] [Google Scholar]
  41. Ramanadham M., Sieker L. C., Jensen L. H. Refinement of triclinic lysozyme: II. The method of stereochemically restrained least squares. Acta Crystallogr B. 1990 Feb 1;46(Pt 1):63–69. doi: 10.1107/s0108768189009195. [DOI] [PubMed] [Google Scholar]
  42. Ross P. D., Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981 May 26;20(11):3096–3102. doi: 10.1021/bi00514a017. [DOI] [PubMed] [Google Scholar]
  43. Sharma S., Georges F., Delbaere L. T., Lee J. S., Klevit R. E., Waygood E. B. Epitope mapping by mutagenesis distinguishes between the two tertiary structures of the histidine-containing protein HPr. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4877–4881. doi: 10.1073/pnas.88.11.4877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sheriff S., Hendrickson W. A., Smith J. L. Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution. J Mol Biol. 1987 Sep 20;197(2):273–296. doi: 10.1016/0022-2836(87)90124-0. [DOI] [PubMed] [Google Scholar]
  45. Sheriff S., Silverton E. W., Padlan E. A., Cohen G. H., Smith-Gill S. J., Finzel B. C., Davies D. R. Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8075–8079. doi: 10.1073/pnas.84.22.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Smith-Gill S. J., Wilson A. C., Potter M., Prager E. M., Feldmann R. J., Mainhart C. R. Mapping the antigenic epitope for a monoclonal antibody against lysozyme. J Immunol. 1982 Jan;128(1):314–322. [PubMed] [Google Scholar]
  47. Stanfield R. L., Takimoto-Kamimura M., Rini J. M., Profy A. T., Wilson I. A. Major antigen-induced domain rearrangements in an antibody. Structure. 1993 Oct 15;1(2):83–93. doi: 10.1016/0969-2126(93)90024-b. [DOI] [PubMed] [Google Scholar]
  48. Tello D., Eisenstein E., Schwarz F. P., Goldbaum F. A., Fields B. A., Mariuzza R. A., Poljak R. J. Structural and physicochemical analysis of the reaction between the anti-lysozyme antibody D1.3 and the anti-idiotopic antibodies E225 and E5.2. J Mol Recognit. 1994 Mar;7(1):57–62. doi: 10.1002/jmr.300070108. [DOI] [PubMed] [Google Scholar]
  49. Tello D., Goldbaum F. A., Mariuzza R. A., Ysern X., Schwarz F. P., Poljak R. J. Three-dimensional structure and thermodynamics of antigen binding by anti-lysozyme antibodies. Biochem Soc Trans. 1993 Nov;21(4):943–946. doi: 10.1042/bst0210943. [DOI] [PubMed] [Google Scholar]
  50. Tulip W. R., Varghese J. N., Laver W. G., Webster R. G., Colman P. M. Refined crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex. J Mol Biol. 1992 Sep 5;227(1):122–148. doi: 10.1016/0022-2836(92)90687-f. [DOI] [PubMed] [Google Scholar]
  51. Tulip W. R., Varghese J. N., Webster R. G., Air G. M., Laver W. G., Colman P. M. Crystal structures of neuraminidase-antibody complexes. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):257–263. doi: 10.1101/sqb.1989.054.01.032. [DOI] [PubMed] [Google Scholar]
  52. Tulip W. R., Varghese J. N., Webster R. G., Laver W. G., Colman P. M. Crystal structures of two mutant neuraminidase-antibody complexes with amino acid substitutions in the interface. J Mol Biol. 1992 Sep 5;227(1):149–159. doi: 10.1016/0022-2836(92)90688-g. [DOI] [PubMed] [Google Scholar]
  53. Varghese J. N., Colman P. M. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. J Mol Biol. 1991 Sep 20;221(2):473–486. doi: 10.1016/0022-2836(91)80068-6. [DOI] [PubMed] [Google Scholar]
  54. Varghese J. N., Laver W. G., Colman P. M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature. 1983 May 5;303(5912):35–40. doi: 10.1038/303035a0. [DOI] [PubMed] [Google Scholar]
  55. Wells J. A. Binding in the growth hormone receptor complex. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):1–6. doi: 10.1073/pnas.93.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wilson I. A., Stanfield R. L. Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol. 1994 Dec;4(6):857–867. doi: 10.1016/0959-440x(94)90267-4. [DOI] [PubMed] [Google Scholar]
  57. Ysern X., Fields B. A., Bhat T. N., Goldbaum F. A., Dall'Acqua W., Schwarz F. P., Poljak R. J., Mariuzza R. A. Solvent rearrangement in an antigen-antibody interface introduced by site-directed mutagenesis of the antibody combining site. J Mol Biol. 1994 May 13;238(4):496–500. doi: 10.1006/jmbi.1994.1309. [DOI] [PubMed] [Google Scholar]
  58. el-Kabbani O. A., Waygood E. B., Delbaere L. T. Tertiary structure of histidine-containing protein of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli. J Biol Chem. 1987 Sep 25;262(27):12926–12929. [PubMed] [Google Scholar]