Plant members of a family of sulfate transporters reveal functional subtypes (original) (raw)

Abstract

Three plant sulfate transporter cDNAs have been isolated by complementation of a yeast mutant with a cDNA library derived from the tropical forage legume Stylosanthes hamata. Two of these cDNAs, shst1 and shst2, encode high-affinity H+/sulfate cotransporters that mediate the uptake of sulfate by plant roots from low concentrations of sulfate in the soil solution. The third, shst3, represents a different subtype encoding a lower affinity H+/sulfate cotransporter, which may be involved in the internal transport of sulfate between cellular or subcellular compartments within the plant. The steady-state level of mRNA corresponding to both subtypes is subject to regulation by signals that ultimately respond to the external sulfate supply. These cDNAs represent the identification of plant members of a family of related sulfate transporter proteins whose sequences exhibit significant amino acid conservation in filamentous fungi, yeast, plants, and mammals.

9373

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bissig M., Hagenbuch B., Stieger B., Koller T., Meier P. J. Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem. 1994 Jan 28;269(4):3017–3021. [PubMed] [Google Scholar]
  2. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  3. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Griffith J. K., Baker M. E., Rouch D. A., Page M. G., Skurray R. A., Paulsen I. T., Chater K. F., Baldwin S. A., Henderson P. J. Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol. 1992 Aug;4(4):684–695. doi: 10.1016/0955-0674(92)90090-y. [DOI] [PubMed] [Google Scholar]
  5. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  6. Hästbacka J., de la Chapelle A., Mahtani M. M., Clines G., Reeve-Daly M. P., Daly M., Hamilton B. A., Kusumi K., Trivedi B., Weaver A. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell. 1994 Sep 23;78(6):1073–1087. doi: 10.1016/0092-8674(94)90281-x. [DOI] [PubMed] [Google Scholar]
  7. Jones D. T., Taylor W. R., Thornton J. M. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry. 1994 Mar 15;33(10):3038–3049. doi: 10.1021/bi00176a037. [DOI] [PubMed] [Google Scholar]
  8. Ketter J. S., Jarai G., Fu Y. H., Marzluf G. A. Nucleotide sequence, messenger RNA stability, and DNA recognition elements of cys-14, the structural gene for sulfate permease II in Neurospora crassa. Biochemistry. 1991 Feb 19;30(7):1780–1787. doi: 10.1021/bi00221a008. [DOI] [PubMed] [Google Scholar]
  9. Kouchi H., Hata S. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet. 1993 Apr;238(1-2):106–119. doi: 10.1007/BF00279537. [DOI] [PubMed] [Google Scholar]
  10. Leggett J. E., Epstein E. Kinetics of Sulfate Absorption by Barley Roots. Plant Physiol. 1956 May;31(3):222–226. doi: 10.1104/pp.31.3.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lin W., Hanson J. B. Cell potentials, cell resistance, and proton fluxes in corn root tissue: effects of dithioerythritol. Plant Physiol. 1976 Sep;58(3):276–282. doi: 10.1104/pp.58.3.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Markovich D., Forgo J., Stange G., Biber J., Murer H. Expression cloning of rat renal Na+/SO4(2-) cotransport. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8073–8077. doi: 10.1073/pnas.90.17.8073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Norbis F., Perego C., Markovich D., Stange G., Verri T., Murer H. cDNA cloning of a rat small-intestinal Na+/SO4(2-) cotransporter. Pflugers Arch. 1994 Oct;428(3-4):217–223. doi: 10.1007/BF00724500. [DOI] [PubMed] [Google Scholar]
  14. Rawson J. R., Thomas K., Clegg M. T. Purification of total cellular DNA from a single plant. Biochem Genet. 1982 Apr;20(3-4):209–219. doi: 10.1007/BF00484419. [DOI] [PubMed] [Google Scholar]
  15. Reizer J., Reizer A., Saier M. H., Jr A functional superfamily of sodium/solute symporters. Biochim Biophys Acta. 1994 Jun 29;1197(2):133–166. doi: 10.1016/0304-4157(94)90003-5. [DOI] [PubMed] [Google Scholar]
  16. Sandal N. N., Marcker K. A. Similarities between a soybean nodulin, Neurospora crassa sulphate permease II and a putative human tumour suppressor. Trends Biochem Sci. 1994 Jan;19(1):19–19. doi: 10.1016/0968-0004(94)90168-6. [DOI] [PubMed] [Google Scholar]
  17. Schweinfest C. W., Henderson K. W., Suster S., Kondoh N., Papas T. S. Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4166–4170. doi: 10.1073/pnas.90.9.4166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith F. W., Hawkesford M. J., Prosser I. M., Clarkson D. T. Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. Mol Gen Genet. 1995 Jun 25;247(6):709–715. doi: 10.1007/BF00290402. [DOI] [PubMed] [Google Scholar]
  19. Smith I. K. Sulfate transport in cultured tobacco cells. Plant Physiol. 1975 Feb;55(2):303–307. doi: 10.1104/pp.55.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thibaud J. B., Davidian J. C., Sentenac H., Soler A., Grignon C. H Cotransports in Corn Roots as Related to the Surface pH Shift Induced by Active H Excretion. Plant Physiol. 1988 Dec;88(4):1469–1473. doi: 10.1104/pp.88.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]