Effect of tetanus toxin on the accumulation of the permeant lipophilic cation tetraphenylphosphonium by guinea pig brain synaptosomes (original) (raw)
Abstract
Accumulation of the permeant lipophilic cation [3H]tetraphenylphosphonium (TPP+) by synaptosome preparations from guinea pig brain cerebral cortex is inhibited 1:10 by medium containing 193 mM K+ and by veratridine. A further 1:10 to 1:15 decrease in TPP+ uptake occurs under nitrogen and in the presence of mitochondrial inhibitors such as oligomycin, whereas starvation and succinate supplementation have no effect. These data indicate that, in analogy to intact neurons, there is an electrical potential (ΔΨ, interior negative) of -60 to -80 mV across the synaptosomal membrane that is due primarily to a K+ diffusion gradient (K+in→K+out). The data also indicate that mitochondria entrapped within the synaptosome but not free mitochondria make a large contribution to the TPP+ concentration gradients observed.
Conditions are defined in which tetanus toxin binds specifically and immediately to synaptosomes in media used to measure TPP+ uptake. Under these conditions tetanus toxin induces dose-dependent changes in TPP+ uptake that are blocked by antitoxin and not mimicked by biologically inactivated toxin preparations. The effect of tetanus toxin on TPP+ uptake is not evident in the presence of 193 mM K+ or veratridine but remains under conditions known to abolish the mitochondrial ΔΨ. Moreover, tetanus toxin has no effect on TPP+ uptake by isolated synaptosomal mitochondria. The results thus define an in vitro action of tetanus toxin on the synaptosomal membrane that can be correlated with biological potency in vivo and is consistent with the in vivo effects of tetanus toxin on neuronal transmission.
Keywords: membrane potential, tetanus, neurotransmitters, batrachotoxin, thyrotropin
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altendorf K., Hirata H., Harold F. M. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli. J Biol Chem. 1975 Feb 25;250(4):1405–1412. [PubMed] [Google Scholar]
- Ambache N., Morgan R. S., Wright G. P. The action of tetanus toxin on the rabbit's iris. J Physiol. 1948 Jan 1;107(1):45–53. doi: 10.1113/jphysiol.1948.sp004248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAKER P. F., HODGKIN A. L., SHAW T. I. Replacement of the axoplasm of giant nerve fibres with artificial solutions. J Physiol. 1962 Nov;164:330–354. doi: 10.1113/jphysiol.1962.sp007025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAKER P. F., HODGKIN A. L., SHAW T. I. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol. 1962 Nov;164:355–374. doi: 10.1113/jphysiol.1962.sp007026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROOKS V. B., CURTIS D. R., ECCLES J. C. The action of tetanus toxin on the inhibition of motoneurones. J Physiol. 1957 Mar 11;135(3):655–672. doi: 10.1113/jphysiol.1957.sp005737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P., Goldring J. M. Membrane potentials in pinched-off presynaptic nerve ternimals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials. J Physiol. 1975 Jun;247(3):589–615. doi: 10.1113/jphysiol.1975.sp010949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell C. W. The Na+, K+, Cl- contents and derived membrane potentials of presynaptic nerve endings in vitro. Brain Res. 1976 Jan 23;101(3):594–599. doi: 10.1016/0006-8993(76)90484-4. [DOI] [PubMed] [Google Scholar]
- Curtis D. R., De Groat W. C. Tetanus toxin and spinal inhibition. Brain Res. 1968 Aug 26;10(2):208–212. doi: 10.1016/0006-8993(68)90123-6. [DOI] [PubMed] [Google Scholar]
- De Belleroche J. S., Bradford H. F. Metabolism of beds of mammalian cortical synaptosomes: response to depolarizing influences. J Neurochem. 1972 Mar;19(3):585–602. doi: 10.1111/j.1471-4159.1972.tb01376.x. [DOI] [PubMed] [Google Scholar]
- Grinius L. L., Jasaitis A. A., Kadziauskas Y. P., Liberman E. A., Skulachev V. P., Topali V. P., Tsofina L. M., Vladimirova M. A. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta. 1970 Aug 4;216(1):1–12. doi: 10.1016/0005-2728(70)90153-2. [DOI] [PubMed] [Google Scholar]
- Grollman E. F., Lee G., Ambesi-Impiombato F. S., Meldolesi M. F., Aloj S. M., Coon H. G., Kaback H. R., Kohn L. D. Effects of thyrotropin on the thyroid cell membrane: hyperpolarization induced by hormone-receptor interaction. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2352–2356. doi: 10.1073/pnas.74.6.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. Active transport of cations in giant axons from Sepia and Loligo. J Physiol. 1955 Apr 28;128(1):28–60. doi: 10.1113/jphysiol.1955.sp005290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haydon D. A., Hladky S. B. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys. 1972 May;5(2):187–282. doi: 10.1017/s0033583500000883. [DOI] [PubMed] [Google Scholar]
- Heinz E., Geck P., Pietrzyk C. Driving forces of amino acid transport in animal cells. Ann N Y Acad Sci. 1975 Dec 30;264:428–441. doi: 10.1111/j.1749-6632.1975.tb31501.x. [DOI] [PubMed] [Google Scholar]
- Korchak H. M., Weissmann G. Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3818–3822. doi: 10.1073/pnas.75.8.3818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krueger B. K., Forn J., Greengard P. Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J Biol Chem. 1977 Apr 25;252(8):2764–2773. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Ledley F. D., Lee G., Kohn L. D., Habig W. H., Hardegree M. C. Tetanus toxin interactions with thyroid plasma membranes. Implications for structure and function of tetanus toxin receptors and potential pathophysiological significance. J Biol Chem. 1977 Jun 25;252(12):4049–4055. [PubMed] [Google Scholar]
- Lee G., Grollman E. F., Dyer S., Beguinot F., Kohn L. D., Habig W. H., Hardegree M. C. Tetanus toxin and thyrotropin interactions with rat brain membrane preparations. J Biol Chem. 1979 May 25;254(10):3826–3832. [PubMed] [Google Scholar]
- Lichtshtein D., Dunlop K., Kaback H. R., Blume A. J. Mechanism of monensin-induced hyperpolarization of neuroblastoma-glioma hybrid NG108-15. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2580–2584. doi: 10.1073/pnas.76.6.2580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lichtshtein D., Kaback H. R., Blume A. J. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. Proc Natl Acad Sci U S A. 1979 Feb;76(2):650–654. doi: 10.1073/pnas.76.2.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MELLANBY J., VANHEYNINGEN W. E., WHITTAKER V. P. FIXATION OF TETANUS TOXIN BY SUBCELLULAR FRACTIONS OF BRAIN. J Neurochem. 1965 Feb;12:77–79. doi: 10.1111/j.1471-4159.1965.tb11941.x. [DOI] [PubMed] [Google Scholar]
- Marchbanks R. M. The conversion of 14C-choline to 14C-acetylcholine in synaptosomes in vitro. Biochem Pharmacol. 1969 Jul;18(7):1763–1766. doi: 10.1016/0006-2952(69)90165-8. [DOI] [PubMed] [Google Scholar]
- Mellanby J., Thompson P. A. The effect of tetanus toxin at the neuromuscular junction in the goldfish. J Physiol. 1972 Jul;224(2):407–419. doi: 10.1113/jphysiol.1972.sp009902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellanby J., Whittaker V. P. The fixation of tetanus toxin by synaptic membranes. J Neurochem. 1968 Mar;15(3):205–208. doi: 10.1111/j.1471-4159.1968.tb06197.x. [DOI] [PubMed] [Google Scholar]
- Osborne R. H., Bradford H. F., Jones D. G. Patterns of amino acid release from nerve-endings isolated from spinal cord and medulla. J Neurochem. 1973 Aug;21(2):407–419. doi: 10.1111/j.1471-4159.1973.tb04260.x. [DOI] [PubMed] [Google Scholar]
- Osborne R. H., Bradford H. F. Tetanus toxin inhibits amino acid release from nerve endings in vitro. Nat New Biol. 1973 Aug 1;244(135):157–158. doi: 10.1038/newbio244157a0. [DOI] [PubMed] [Google Scholar]
- Padan E., Zilberstein D., Rottenberg H. The proton electrochemical gradient in Escherichia coli cells. Eur J Biochem. 1976 Apr 1;63(2):533–541. doi: 10.1111/j.1432-1033.1976.tb10257.x. [DOI] [PubMed] [Google Scholar]
- Rottenberg H. The measurement of transmembrane electrochemical proton gradients. J Bioenerg. 1975 May;7(2):61–74. doi: 10.1007/BF01558427. [DOI] [PubMed] [Google Scholar]
- Schuldiner S., Kaback H. R. Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry. 1975 Dec 16;14(25):5451–5461. doi: 10.1021/bi00696a011. [DOI] [PubMed] [Google Scholar]
- Semba T., Kano M. Glycine in the spinal cord of cats with local tetanus rigidity. Science. 1969 May 2;164(3879):571–572. doi: 10.1126/science.164.3879.571. [DOI] [PubMed] [Google Scholar]
- Tamir H., Rapport M. M., Roizin L., Huang Y. L., Liu J. C. Preparation of synaptosomes and vesicles with sodium diatrizoate. J Neurochem. 1974 Nov;23(5):943–949. doi: 10.1111/j.1471-4159.1974.tb10746.x. [DOI] [PubMed] [Google Scholar]
- Wonnacott S., Marchbanks R. M., Fiol C. Ca2+ uptake by synaptosomes and its effect on the inhibition of acetylcholine release by botulinum toxin. J Neurochem. 1978 May;30(5):1127–1134. doi: 10.1111/j.1471-4159.1978.tb12407.x. [DOI] [PubMed] [Google Scholar]
- Wonnacott S., Marchbanks R. M. Inhibition by botulinum toxin of depolarization-evoked release of (14C)acetylcholine from synaptosomes in vitro. Biochem J. 1976 Jun 15;156(3):701–712. doi: 10.1042/bj1560701. [DOI] [PMC free article] [PubMed] [Google Scholar]