Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionine-dependent transmethylation reactions (original) (raw)

Abstract

S-Adenosylhomocysteine hydrolase (SAHH) is a key enzyme in transmethylation reactions that use S-adenosylmethionine as the methyl donor. Because of the importance of SAHH in a number of S-adenosylmethionine-dependent transmethylation reactions, particularly the 5' capping of mRNA during viral replication, SAHH has been considered as a target of potential antiviral agents against animal viruses. To test the possibility of engineering a broad type of resistance to plant viruses, we expressed the antisense RNA for tobacco SAHH in transgenic tobacco plants. As expected, transgenic plants constitutively expressing an anti-sense SAHH gene showed resistance to infection by various plant viruses. Among those plants, about half exhibited some level of morphological change (typically stunting). Analysis of the physiological change in those plants showed that they contained excess levels of cytokinin. Because cytokinin has been found to induce acquired resistance, there is also a strong possibility that the observed resistance was induced by cytokinin.

6117

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel P. P., Nelson R. S., De B., Hoffmann N., Rogers S. G., Fraley R. T., Beachy R. N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science. 1986 May 9;232(4751):738–743. doi: 10.1126/science.3457472. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. M., Palukaitis P., Zaitlin M. A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8759–8763. doi: 10.1073/pnas.89.18.8759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Fazio G., Alba A. P., Vicente M., De Clercq E. Antiviral activity of S-adenosylhomocysteine hydrolase inhibitors against plant viruses. Antiviral Res. 1990 May;13(5):219–226. doi: 10.1016/0166-3542(90)90067-h. [DOI] [PubMed] [Google Scholar]
  4. De Fazio G., Vicente M., De Clercq E. Antiviral effects of dihydroxypropyladenine [RS)-DHPA) and bromovinyldeoxyuridine (BVDU) on plant viruses. Antiviral Res. 1987 Nov;8(4):163–169. doi: 10.1016/0166-3542(87)90070-2. [DOI] [PubMed] [Google Scholar]
  5. Golemboski D. B., Lomonossoff G. P., Zaitlin M. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6311–6315. doi: 10.1073/pnas.87.16.6311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gordon R. K., Miura G. A., Alonso T., Chiang P. K. S-adenosylmethionine and its sulfur metabolites. Methods Enzymol. 1987;143:191–195. doi: 10.1016/0076-6879(87)43036-x. [DOI] [PubMed] [Google Scholar]
  7. Hemenway C., Fang R. X., Kaniewski W. K., Chua N. H., Tumer N. E. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J. 1988 May;7(5):1273–1280. doi: 10.1002/j.1460-2075.1988.tb02941.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hohman R. J., Guitton M. C., Veron M. Inactivation of S-adenosyl-L-homocysteine hydrolase by cAMP results from dissociation of enzyme-bound NAD+. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4578–4581. doi: 10.1073/pnas.82.14.4578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iwamura H., Masuda N., Koshimizu K., Matsubara S. Quantitative aspects of the receptor binding of cytokinin agonists and antagonists. J Med Chem. 1983 Jun;26(6):838–844. doi: 10.1021/jm00360a010. [DOI] [PubMed] [Google Scholar]
  10. Kovarík A., Koukalová B., Holý A., Bezdek M. Sequence-specific hypomethylation of the tobacco genome induced with dihydroxypropyladenine, ethionine and 5-azacytidine. FEBS Lett. 1994 Oct 24;353(3):309–311. doi: 10.1016/0014-5793(94)01048-x. [DOI] [PubMed] [Google Scholar]
  11. Lindbo J. A., Silva-Rosales L., Proebsting W. M., Dougherty W. G. Induction of a Highly Specific Antiviral State in Transgenic Plants: Implications for Regulation of Gene Expression and Virus Resistance. Plant Cell. 1993 Dec;5(12):1749–1759. doi: 10.1105/tpc.5.12.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Poulton J. E., Butt V. S. Purification and properties of S-adenosyl-L-homocysteine hydrolase from leaves of spinach beet. Arch Biochem Biophys. 1976 Jan;172(1):135–142. doi: 10.1016/0003-9861(76)90058-8. [DOI] [PubMed] [Google Scholar]
  13. Prakash N. J., Davis G. F., Jarvi E. T., Edwards M. L., McCarthy J. R., Bowlin T. L. Antiretroviral activity of mechanism-based irreversible inhibitors of S-adenosylhomocysteine hydrolase. Life Sci. 1992;50(19):1425–1435. doi: 10.1016/0024-3205(92)90261-m. [DOI] [PubMed] [Google Scholar]
  14. Ransohoff R. M., Narayan P., Ayers D. F., Rottman F. M., Nilsen T. W. Priming of influenza mRNA transcription is inhibited in CHO cells treated with the methylation inhibitor, neplanocin A. Antiviral Res. 1987 Jul;7(6):317–327. doi: 10.1016/0166-3542(87)90014-3. [DOI] [PubMed] [Google Scholar]
  15. TROUTMAN J. L., FULTON R. W. Resistance in tobacco to cucumber mosaic virus. Virology. 1958 Oct;6(2):303–316. doi: 10.1016/0042-6822(58)90084-9. [DOI] [PubMed] [Google Scholar]
  16. Taylor J. S., Thompson B., Pate J. S., Atkins C. A., Pharis R. P. Cytokinins in the Phloem Sap of White Lupin (Lupinus albus L.). Plant Physiol. 1990 Dec;94(4):1714–1720. doi: 10.1104/pp.94.4.1714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wolfe M. S., Borchardt R. T. S-adenosyl-L-homocysteine hydrolase as a target for antiviral chemotherapy. J Med Chem. 1991 May;34(5):1521–1530. doi: 10.1021/jm00109a001. [DOI] [PubMed] [Google Scholar]