Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: three consecutive stages may be required for successful tumor vaccination (original) (raw)
Abstract
Although both CD4+ and CD8+ T cells are clearly required to generate long-lasting anti-tumor immunity induced by s.c. vaccination with interleukin 2 (IL-2)-transfected, irradiated M-3 clone murine melanoma cells, some controversy continues about the site and mode of T-cell activation in this system. Macrophages, granulocytes, and natural killer cells infiltrate the vaccination site early after injection into either syngeneic euthymic DBA/2 mice or athymic nude mice and eliminate the inoculum within 48 hr. We could not find T cells at the vaccination site, which argues against the concept that T-cell priming by the IL-2-secreting cancer cells occurs directly at that location. However, reverse transcription-PCR revealed transcripts indicative of T-cell activation and expansion in the draining lymph nodes of mice immunized with the IL-2-secreting vaccine but not in mice vaccinated with untransfected, irradiated M-3 cells. We therefore propose that the antigen-presenting cells, which invade the vaccination site, process tumor-derived antigens and, subsequently, initiate priming of tumor-specific T lymphocytes in lymphoid organs. These findings suggest a three-stage process for the generation of effector T cells after vaccination with IL-2-secreting tumor cells: (i) tumor-antigen uptake and processing at the site of injection by antigen-presenting cells, (ii) migration of antigen-presenting cells into the regional draining lymph nodes, where T-cell priming occurs, and (iii) circulation of activated T cells that either perform or initiate effector mechanisms leading to tumor cell destruction.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bannerji R., Arroyo C. D., Cordon-Cardo C., Gilboa E. The role of IL-2 secreted from genetically modified tumor cells in the establishment of antitumor immunity. J Immunol. 1994 Mar 1;152(5):2324–2332. [PubMed] [Google Scholar]
- Belosevic M., Finbloom D. S., Meltzer M. S., Nacy C. A. IL-2. A cofactor for induction of activated macrophage resistance to infection. J Immunol. 1990 Aug 1;145(3):831–839. [PubMed] [Google Scholar]
- Bubeník J., Símová J., Jandlová T. Immunotherapy of cancer using local administration of lymphoid cells transformed by IL-2 cDNA and constitutively producing IL-2. Immunol Lett. 1990 Feb;23(4):287–292. doi: 10.1016/0165-2478(90)90074-z. [DOI] [PubMed] [Google Scholar]
- Cavallo F., Giovarelli M., Gulino A., Vacca A., Stoppacciaro A., Modesti A., Forni G. Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene. J Immunol. 1992 Dec 1;149(11):3627–3635. [PubMed] [Google Scholar]
- Cotten M., Wagner E., Zatloukal K., Phillips S., Curiel D. T., Birnstiel M. L. High-efficiency receptor-mediated delivery of small and large (48 kilobase gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6094–6098. doi: 10.1073/pnas.89.13.6094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crabtree G. R. Contingent genetic regulatory events in T lymphocyte activation. Science. 1989 Jan 20;243(4889):355–361. doi: 10.1126/science.2783497. [DOI] [PubMed] [Google Scholar]
- Fearon E. R., Pardoll D. M., Itaya T., Golumbek P., Levitsky H. I., Simons J. W., Karasuyama H., Vogelstein B., Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990 Feb 9;60(3):397–403. doi: 10.1016/0092-8674(90)90591-2. [DOI] [PubMed] [Google Scholar]
- Huang A. Y., Golumbek P., Ahmadzadeh M., Jaffee E., Pardoll D., Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science. 1994 May 13;264(5161):961–965. doi: 10.1126/science.7513904. [DOI] [PubMed] [Google Scholar]
- Lagoo-Deenadayalan S., Lagoo A. S., Barber W. H., Hardy K. J. A standardized approach to PCR-based semiquantitation of multiple cytokine gene transcripts from small cell samples. Lymphokine Cytokine Res. 1993 Apr;12(2):59–67. [PubMed] [Google Scholar]
- Mackay C. R., Marston W. L., Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med. 1990 Mar 1;171(3):801–817. doi: 10.1084/jem.171.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackay C. R., Marston W., Dudler L. Altered patterns of T cell migration through lymph nodes and skin following antigen challenge. Eur J Immunol. 1992 Sep;22(9):2205–2210. doi: 10.1002/eji.1830220904. [DOI] [PubMed] [Google Scholar]
- Malkovský M., Loveland B., North M., Asherson G. L., Gao L., Ward P., Fiers W. Recombinant interleukin-2 directly augments the cytotoxicity of human monocytes. Nature. 1987 Jan 15;325(6101):262–265. doi: 10.1038/325262a0. [DOI] [PubMed] [Google Scholar]
- Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Lotze M. T., Mulé J. J. NIH conference. New approaches to the immunotherapy of cancer using interleukin-2. Ann Intern Med. 1988 Jun;108(6):853–864. doi: 10.7326/0003-4819-108-6-853. [DOI] [PubMed] [Google Scholar]
- Stoppacciaro A., Melani C., Parenza M., Mastracchio A., Bassi C., Baroni C., Parmiani G., Colombo M. P. Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte-T cell cooperation and T cell-produced interferon gamma. J Exp Med. 1993 Jul 1;178(1):151–161. doi: 10.1084/jem.178.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tepper R. I., Coffman R. L., Leder P. An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science. 1992 Jul 24;257(5069):548–551. doi: 10.1126/science.1636093. [DOI] [PubMed] [Google Scholar]
- Tepper R. I., Pattengale P. K., Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell. 1989 May 5;57(3):503–512. doi: 10.1016/0092-8674(89)90925-2. [DOI] [PubMed] [Google Scholar]
- Testi R., D'Ambrosio D., De Maria R., Santoni A. The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today. 1994 Oct;15(10):479–483. doi: 10.1016/0167-5699(94)90193-7. [DOI] [PubMed] [Google Scholar]
- Zatloukal K., Schmidt W., Cotten M., Wagner E., Stingl G., Birnstiel M. L. Somatic gene therapy for cancer: the utility of transferrinfection in generating 'tumor vaccines'. Gene. 1993 Dec 15;135(1-2):199–207. doi: 10.1016/0378-1119(93)90066-c. [DOI] [PubMed] [Google Scholar]
- Zatloukal K., Schneeberger A., Berger M., Schmidt W., Koszik F., Kutil R., Cotten M., Wagner E., Buschle M., Maass G. Elicitation of a systemic and protective anti-melanoma immune response by an IL-2-based vaccine. Assessment of critical cellular and molecular parameters. J Immunol. 1995 Apr 1;154(7):3406–3419. [PubMed] [Google Scholar]