Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis (original) (raw)

Abstract

An attempt has been made to put forward a unifying hypothesis explaining the role hormones play in the genesis of mammary cancers of different phenotypes and genotypes in mice, rats, and humans. Most mammary cancers in these species originate in luminal mammary epithelial cells lining the mammary ducts and alveoli. These cancers are histopathologically diverse and are classified on the basis of growth requirements as hormone-dependent or hormone-independent tumors. In most strains of mice, mammary cancers at the time of detection are largely of the hormone-independent type; in rats, almost all mammary cancers are hormone-dependent, while humans have both phenotypes. In spite of these differences, in vivo studies show that hormones (ovarian and pituitary) are essential for luminal mammary epithelial cell proliferation and also for the development of mammary cancers of both hormone-independent and hormone-dependent types. This article, based on our extensive in vivo and in vivo studies and on current literature, proposes a model to explain the central role of hormones in the genesis of all types of mammary cancers. The model attempts to address the following questions: (i) how hormones regulate luminal mammary epithelial cell proliferation, (ii) why hormones are required for the genesis of mammary cancers of all phenotypes and genotypes, including those which are always classified as hormone-independent tumors, and (iii) why the three species (mouse, rat, and human) have consistently different ratios of hormone-dependent to hormone-independent tumors.

3650

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Gold L. S. Too many rodent carcinogens: mitogenesis increases mutagenesis. Science. 1990 Aug 31;249(4972):970–971. doi: 10.1126/science.2136249. [DOI] [PubMed] [Google Scholar]
  2. Anbazhagan R., Bartek J., Monaghan P., Gusterson B. A. Growth and development of the human infant breast. Am J Anat. 1991 Dec;192(4):407–417. doi: 10.1002/aja.1001920408. [DOI] [PubMed] [Google Scholar]
  3. Anbazhagan R., Gusterson B. A. Prenatal factors may influence predisposition to breast cancer. Eur J Cancer. 1994;30A(1):1–3. doi: 10.1016/s0959-8049(05)80006-1. [DOI] [PubMed] [Google Scholar]
  4. Anderson C. H., Hussain R. A., Han M. C., Beattie C. W. Estrous cycle dependence of nitrosomethylurea (NMU)-induced preneoplastic lesions in rat mammary gland. Cancer Lett. 1991 Jan;56(1):77–84. doi: 10.1016/0304-3835(91)90197-p. [DOI] [PubMed] [Google Scholar]
  5. Auer G. U., Fallenius A. G., Erhardt K. Y., Sundelin B. S. Progression of mammary adenocarcinomas as reflected by nuclear DNA content. Cytometry. 1984 Jul;5(4):420–425. doi: 10.1002/cyto.990050420. [DOI] [PubMed] [Google Scholar]
  6. Barker S., Panahy C., Puddefoot J. R., Goode A. W., Vinson G. P. Epidermal growth factor receptor and oestrogen receptors in the non-malignant part of the cancerous breast. Br J Cancer. 1989 Nov;60(5):673–677. doi: 10.1038/bjc.1989.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bera T. K., Guzman R. C., Miyamoto S., Panda D. K., Sasaki M., Hanyu K., Enami J., Nandi S. Identification of a mammary transforming gene (MAT1) associated with mouse mammary carcinogenesis. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9789–9793. doi: 10.1073/pnas.91.21.9789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bertram J. S., Heidelberger C. Cell cycle dependency of oncogenic transformation induced by N-methyl-N'-nitro-N-nitrosoquanidine in culture. Cancer Res. 1974 Mar;34(3):526–537. [PubMed] [Google Scholar]
  9. Boylan E. S., Calhoon R. E. Prenatal exposure to diethylstilbestrol: ovarian-independent growth of mammary tumors induced by 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst. 1981 Apr;66(4):649–652. [PubMed] [Google Scholar]
  10. Boylan E. S., Calhoon R. E., Vonderhaar B. K. Transplacental action of diethylstilbestrol on reproductive and endocrine organs, mammary glands, and serum hormone levels in two- and nine-month-old female rats. Cancer Res. 1983 Oct;43(10):4872–4878. [PubMed] [Google Scholar]
  11. CLIFTON K. H., FURTH J. Ducto-alveolar growth in mammary glands of adrenogonadectomized male rats bearing mammotropic pituitary tumors. Endocrinology. 1960 Jun;66:893–897. doi: 10.1210/endo-66-6-893. [DOI] [PubMed] [Google Scholar]
  12. Cayama E., Tsuda H., Sarma D. S., Farber E. Initiation of chemical carcinogenesis requires cell proliferation. Nature. 1978 Sep 7;275(5675):60–62. doi: 10.1038/275060a0. [DOI] [PubMed] [Google Scholar]
  13. Christov K., Swanson S. M., Guzman R. C., Thordarson G., Jin E., Talamantes F., Nandi S. Kinetics of mammary epithelial cell proliferation in pituitary isografted BALB/c mice. Carcinogenesis. 1993 Oct;14(10):2019–2025. doi: 10.1093/carcin/14.10.2019. [DOI] [PubMed] [Google Scholar]
  14. Cohen S. M., Ellwein L. B. Cell proliferation in carcinogenesis. Science. 1990 Aug 31;249(4972):1007–1011. doi: 10.1126/science.2204108. [DOI] [PubMed] [Google Scholar]
  15. Cutts J. H. Estrogen-induced breast cancer in the rat. Proc Can Cancer Conf. 1966;6:50–68. [PubMed] [Google Scholar]
  16. Darcy K. M., Black J. D., Hahm H. A., Ip M. M. Mammary organoids from immature virgin rats undergo ductal and alveolar morphogenesis when grown within a reconstituted basement membrane. Exp Cell Res. 1991 Sep;196(1):49–65. doi: 10.1016/0014-4827(91)90455-4. [DOI] [PubMed] [Google Scholar]
  17. Deeks S., Richards J., Nandi S. Maintenance of normal rat mammary epithelial cells by insulin and insulin-like growth factor 1. Exp Cell Res. 1988 Feb;174(2):448–460. doi: 10.1016/0014-4827(88)90314-x. [DOI] [PubMed] [Google Scholar]
  18. Dilley W. G., Nandi S. Rat mammary gland differentiation in vitro in the absence of steroids. Science. 1968 Jul 5;161(3836):59–60. doi: 10.1126/science.161.3836.59. [DOI] [PubMed] [Google Scholar]
  19. Dittadi R., Donisi P. M., Brazzale A., Cappellozza L., Bruscagnin G., Gion M. Epidermal growth factor receptor in breast cancer. Comparison with non malignant breast tissue. Br J Cancer. 1993 Jan;67(1):7–9. doi: 10.1038/bjc.1993.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Edery M., McGrath M., Larson L., Nandi S. Correlation between in vitro growth and regulation of estrogen and progesterone receptors in rat mammary epithelial cells. Endocrinology. 1984 Nov;115(5):1691–1697. doi: 10.1210/endo-115-5-1691. [DOI] [PubMed] [Google Scholar]
  21. Ekbom A., Trichopoulos D., Adami H. O., Hsieh C. C., Lan S. J. Evidence of prenatal influences on breast cancer risk. Lancet. 1992 Oct 24;340(8826):1015–1018. doi: 10.1016/0140-6736(92)93019-j. [DOI] [PubMed] [Google Scholar]
  22. Ethier S. P., Summerfelt R. M., Cundiff K. C., Asch B. B. The influence of growth factors on the proliferative potential of normal and primary breast cancer-derived human breast epithelial cells. Breast Cancer Res Treat. 1991 Jan-Feb;17(3):221–230. doi: 10.1007/BF01806371. [DOI] [PubMed] [Google Scholar]
  23. Fendl K. C., Zimniski S. J. Role of tamoxifen in the induction of hormone-independent rat mammary tumors. Cancer Res. 1992 Jan 1;52(1):235–237. [PubMed] [Google Scholar]
  24. Geschickter C. F. MAMMARY CARCINOMA IN THE RAT WITH METASTASIS INDUCED BY ESTROGEN. Science. 1939 Jan 13;89(2298):35–37. doi: 10.1126/science.89.2298.35-a. [DOI] [PubMed] [Google Scholar]
  25. Gottardis M. M., Robinson S. P., Jordan V. C. Estradiol-stimulated growth of MCF-7 tumors implanted in athymic mice: a model to study the tumoristatic action of tamoxifen. J Steroid Biochem. 1988;30(1-6):311–314. doi: 10.1016/0022-4731(88)90113-6. [DOI] [PubMed] [Google Scholar]
  26. Greenberg E. R., Barnes A. B., Resseguie L., Barrett J. A., Burnside S., Lanza L. L., Neff R. K., Stevens M., Young R. H., Colton T. Breast cancer in mothers given diethylstilbestrol in pregnancy. N Engl J Med. 1984 Nov 29;311(22):1393–1398. doi: 10.1056/NEJM198411293112201. [DOI] [PubMed] [Google Scholar]
  27. Gusterson B. A., Williams J., Bunnage H., O'Hare M. J., Dubois J. D. Human breast epithelium transplanted into nude mice. Proliferation and milk protein production in response to pregnancy. Virchows Arch A Pathol Anat Histopathol. 1984;404(3):325–333. doi: 10.1007/BF00694897. [DOI] [PubMed] [Google Scholar]
  28. Guzman R. C., Osborn R. C., Bartley J. C., Imagawa W., Asch B. B., Nandi S. In vitro transformation of mouse mammary epithelial cells grown serum-free inside collagen gels. Cancer Res. 1987 Jan 1;47(1):275–280. [PubMed] [Google Scholar]
  29. Guzman R. C., Osborn R. C., Swanson S. M., Sakthivel R., Hwang S. I., Miyamoto S., Nandi S. Incidence of c-Ki-ras activation in N-methyl-N-nitrosourea-induced mammary carcinomas in pituitary-isografted mice. Cancer Res. 1992 Oct 15;52(20):5732–5737. [PubMed] [Google Scholar]
  30. Habel L. A., Stanford J. L. Hormone receptors and breast cancer. Epidemiol Rev. 1993;15(1):209–219. doi: 10.1093/oxfordjournals.epirev.a036107. [DOI] [PubMed] [Google Scholar]
  31. Hahm H. A., Ip M. M. Primary culture of normal rat mammary epithelial cells within a basement membrane matrix. I. Regulation of proliferation by hormones and growth factors. In Vitro Cell Dev Biol. 1990 Aug;26(8):791–802. doi: 10.1007/BF02623621. [DOI] [PubMed] [Google Scholar]
  32. Hammond S. L., Ham R. G., Stampfer M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5435–5439. doi: 10.1073/pnas.81.17.5435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hancock S. L., Tucker M. A., Hoppe R. T. Breast cancer after treatment of Hodgkin's disease. J Natl Cancer Inst. 1993 Jan 6;85(1):25–31. doi: 10.1093/jnci/85.1.25. [DOI] [PubMed] [Google Scholar]
  34. Harris J. R., Lippman M. E., Veronesi U., Willett W. Breast cancer (1) N Engl J Med. 1992 Jul 30;327(5):319–328. doi: 10.1056/NEJM199207303270505. [DOI] [PubMed] [Google Scholar]
  35. Harris J. R., Lippman M. E., Veronesi U., Willett W. Breast cancer (2). N Engl J Med. 1992 Aug 6;327(6):390–398. doi: 10.1056/NEJM199208063270606. [DOI] [PubMed] [Google Scholar]
  36. Harris J. R., Lippman M. E., Veronesi U., Willett W. Breast cancer (3). N Engl J Med. 1992 Aug 13;327(7):473–480. doi: 10.1056/NEJM199208133270706. [DOI] [PubMed] [Google Scholar]
  37. Haslam S. Z., Nummy K. A. The ontogeny and cellular distribution of estrogen receptors in normal mouse mammary gland. J Steroid Biochem Mol Biol. 1992 Jul;42(6):589–595. doi: 10.1016/0960-0760(92)90449-s. [DOI] [PubMed] [Google Scholar]
  38. Hilakivi-Clarke L., Clarke R., Lippman M. E. Perinatal factors increase breast cancer risk. Breast Cancer Res Treat. 1994;31(2-3):273–284. doi: 10.1007/BF00666160. [DOI] [PubMed] [Google Scholar]
  39. ICHINOSE R. R., NANDI S. LOBULOALVEOLAR DIFFERENTIATION IN MOUSE MAMMARY TISSUES IN VITRO. Science. 1964 Jul 31;145(3631):496–497. doi: 10.1126/science.145.3631.496. [DOI] [PubMed] [Google Scholar]
  40. Imagawa W., Bandyopadhyay G. K., Nandi S. Regulation of mammary epithelial cell growth in mice and rats. Endocr Rev. 1990 Nov;11(4):494–523. doi: 10.1210/edrv-11-4-494. [DOI] [PubMed] [Google Scholar]
  41. Imagawa W., Spencer E. M., Larson L., Nandi S. Somatomedin-C substitutes for insulin for the growth of mammary epithelial cells from normal virgin mice in serum-free collagen gel cell culture. Endocrinology. 1986 Dec;119(6):2695–2699. doi: 10.1210/endo-119-6-2695. [DOI] [PubMed] [Google Scholar]
  42. Jacquemier J. D., Hassoun J., Torrente M., Martin P. M. Distribution of estrogen and progesterone receptors in healthy tissue adjacent to breast lesions at various stages--immunohistochemical study of 107 cases. Breast Cancer Res Treat. 1990 Feb;15(2):109–117. doi: 10.1007/BF01810783. [DOI] [PubMed] [Google Scholar]
  43. Jiang S. Y., Jordan V. C. Growth regulation of estrogen receptor-negative breast cancer cells transfected with complementary DNAs for estrogen receptor. J Natl Cancer Inst. 1992 Apr 15;84(8):580–591. doi: 10.1093/jnci/84.8.580. [DOI] [PubMed] [Google Scholar]
  44. Komitowski D., Sass B., Laub W. Rat mammary tumor classification: notes on comparative aspects. J Natl Cancer Inst. 1982 Jan;68(1):147–156. [PubMed] [Google Scholar]
  45. LILIENFELD A. M. The relationship of cancer of the female breast to artificial menopause and martial status. Cancer. 1956 Sep-Oct;9(5):927–934. doi: 10.1002/1097-0142(195609/10)9:5<927::aid-cncr2820090510>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  46. Lanari C., Molinolo A. A., Pasqualini C. D. Induction of mammary adenocarcinomas by medroxyprogesterone acetate in BALB/c female mice. Cancer Lett. 1986 Nov;33(2):215–223. doi: 10.1016/0304-3835(86)90027-3. [DOI] [PubMed] [Google Scholar]
  47. Lee A. E. Mammary tumour development in BR6 mice: hormonal stimulation. Br J Cancer. 1970 Sep;24(3):568–573. doi: 10.1038/bjc.1970.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Lindsey W. F., Das Gupta T. K., Beattie C. W. Influence of the estrous cycle during carcinogen exposure on nitrosomethylurea-induced rat mammary carcinoma. Cancer Res. 1981 Oct;41(10):3857–3862. [PubMed] [Google Scholar]
  49. Marshall E. Epidemiology. Search for a killer: focus shifts from fat to hormones. Science. 1993 Jan 29;259(5095):618–621. doi: 10.1126/science.8430308. [DOI] [PubMed] [Google Scholar]
  50. Masters J. R., Drife J. O., Scarisbrick J. J. Cyclic Variation of DNA synthesis in human breast epithelium. J Natl Cancer Inst. 1977 May;58(5):1263–1265. doi: 10.1093/jnci/58.5.1263. [DOI] [PubMed] [Google Scholar]
  51. Matsuzawa A., Yamamoto T. Response of a pregnancy-dependent mouse mammary tumor to hormones. J Natl Cancer Inst. 1975 Aug;55(2):447–453. [PubMed] [Google Scholar]
  52. McFadyen I. R., Worth H. G., Wright D. J., Notta S. S. High oestrogen excretion in pregnancy. Br J Obstet Gynaecol. 1982 Dec;89(12):994–999. doi: 10.1111/j.1471-0528.1982.tb04653.x. [DOI] [PubMed] [Google Scholar]
  53. McManus M. J., Welsch C. W. The effect of estrogen, progesterone, thyroxine, and human placental lactogen on DNA synthesis of human breast ductal epithelium maintained in athymic nude mice. Cancer. 1984 Nov 1;54(9):1920–1927. doi: 10.1002/1097-0142(19841101)54:9<1920::aid-cncr2820540924>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  54. Medina D. Hormones and mouse mammary tumorigenesis. Cancer Res. 1981 Sep;41(9 Pt 2):3819–3820. [PubMed] [Google Scholar]
  55. Medina D. Mammary tumorigenesis in chemical carcinogen-treated mice. II. Dependence on hormone stimulation for tumorigenesis. J Natl Cancer Inst. 1974 Jul;53(1):223–226. doi: 10.1093/jnci/53.1.223. [DOI] [PubMed] [Google Scholar]
  56. Medina D. Mammary tumorigenesis in chemical carcinogen-treated mice. VI. Tumor-producing capabilities of mammary dysplasias in BALB/cCrgl mice. J Natl Cancer Inst. 1976 Nov;57(5):1185–1189. doi: 10.1093/jnci/57.5.1185. [DOI] [PubMed] [Google Scholar]
  57. Meyer J. S. Cell proliferation in normal human breast ducts, fibroadenomas, and other ductal hyperplasias measured by nuclear labeling with tritiated thymidine. Effects of menstrual phase, age, and oral contraceptive hormones. Hum Pathol. 1977 Jan;8(1):67–81. doi: 10.1016/s0046-8177(77)80066-x. [DOI] [PubMed] [Google Scholar]
  58. Miyamoto S., Guzman R. C., Osborn R. C., Nandi S. Neoplastic transformation of mouse mammary epithelial cells by in vitro exposure to N-methyl-N-nitrosourea. Proc Natl Acad Sci U S A. 1988 Jan;85(2):477–481. doi: 10.1073/pnas.85.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Miyamoto S., Sukumar S., Guzman R. C., Osborn R. C., Nandi S. Transforming c-Ki-ras mutation is a preneoplastic event in mouse mammary carcinogenesis induced in vitro by N-methyl-N-nitrosourea. Mol Cell Biol. 1990 Apr;10(4):1593–1599. doi: 10.1128/mcb.10.4.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Moolgavkar S. H., Day N. E., Stevens R. G. Two-stage model for carcinogenesis: Epidemiology of breast cancer in females. J Natl Cancer Inst. 1980 Sep;65(3):559–569. [PubMed] [Google Scholar]
  61. Moon R. C. Relationship between previous reproductive history and chemically induced mammary cancer in rats. Int J Cancer. 1969 May 15;4(3):312–317. doi: 10.1002/ijc.2910040308. [DOI] [PubMed] [Google Scholar]
  62. Mori T., Nagasawa H., Bern H. A. Long-term effects of perinatal exposure to hormones on normal and neoplastic mammary growth in rodents: a review. J Environ Pathol Toxicol. 1979 Dec;3(1-2):191–205. [PubMed] [Google Scholar]
  63. Mukherjee A. S., Washburn L. L., Banerjee M. R. Role of insulin as a "permissive" hormone in mammary gland development. Nature. 1973 Nov 16;246(5429):159–160. doi: 10.1038/246159a0. [DOI] [PubMed] [Google Scholar]
  64. Nagasawa H. The cause of species differences in mammary tumourigenesis: significance of mammary gland DNA synthesis. Med Hypotheses. 1979 Apr;5(4):499–510. doi: 10.1016/0306-9877(79)90117-8. [DOI] [PubMed] [Google Scholar]
  65. Nagasawa H., Yanai R. Frequency of mammary cell division in relation to age: its significance in the induction of mammary tumors by carcinogen in rats. J Natl Cancer Inst. 1974 Feb;52(2):609–610. doi: 10.1093/jnci/52.2.609. [DOI] [PubMed] [Google Scholar]
  66. Nagasawa H., Yanai R., Taniguchi H. Importance of mammary gland DNA synthesis on carcinogen-induced mammary tumorigenesis in rats. Cancer Res. 1976 Jul;36(7 Pt 1):2223–2226. [PubMed] [Google Scholar]
  67. Neumann F. Early indicators for carcinogenesis in sex-hormone-sensitive organs. Mutat Res. 1991 Jun;248(2):341–356. doi: 10.1016/0027-5107(91)90067-x. [DOI] [PubMed] [Google Scholar]
  68. Neumann F., Elger W. [The effect of the anti-androgen 1,2-alpha-methylene-6-chloro-delta-4,6-pregnadiene-17-alpha-ol-3,20-dione-17-alpha-acetate (cyproterone acetate) on the development of the mammary glands of male foetal rats]. J Endocrinol. 1966 Dec;36(4):347–352. doi: 10.1677/joe.0.0360347. [DOI] [PubMed] [Google Scholar]
  69. Noble R. L., Collip J. B. Regression of OEstrogen Induced Mammary Tumours in Female Rats Following Removal of the Stimulus. Can Med Assoc J. 1941 Jan;44(1):1–5. [PMC free article] [PubMed] [Google Scholar]
  70. Oberley T. D., Gonzalez A., Lauchner L. J., Oberley L. W., Li J. J. Characterization of early kidney lesions in estrogen-induced tumors in the Syrian hamster. Cancer Res. 1991 Apr 1;51(7):1922–1929. [PubMed] [Google Scholar]
  71. Oka T., Topper Y. J. Is prolactin mitogenic for mammary epithelium? Proc Natl Acad Sci U S A. 1972 Jul;69(7):1693–1696. doi: 10.1073/pnas.69.7.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Osborne C. K., Hobbs K., Clark G. M. Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Res. 1985 Feb;45(2):584–590. [PubMed] [Google Scholar]
  73. Pallis L., Skoog L., Falkmer U., Wilking N., Rutquist L. E., Auer G., Cedermark B. The DNA profile of breast cancer in situ. Eur J Surg Oncol. 1992 Apr;18(2):108–111. [PubMed] [Google Scholar]
  74. Petersen O. W., Høyer P. E., van Deurs B. Frequency and distribution of estrogen receptor-positive cells in normal, nonlactating human breast tissue. Cancer Res. 1987 Nov 1;47(21):5748–5751. [PubMed] [Google Scholar]
  75. Petridou E., Panagiotopoulou K., Katsouyanni K., Spanos E., Trichopoulos D. Tobacco smoking, pregnancy estrogens, and birth weight. Epidemiology. 1990 May;1(3):247–250. doi: 10.1097/00001648-199005000-00011. [DOI] [PubMed] [Google Scholar]
  76. Preston-Martin S., Pike M. C., Ross R. K., Jones P. A., Henderson B. E. Increased cell division as a cause of human cancer. Cancer Res. 1990 Dec 1;50(23):7415–7421. [PubMed] [Google Scholar]
  77. Ratko T. A., Beattie C. W. Estrous cycle modification of rat mammary tumor induction by a single dose of N-methyl-N-nitrosourea. Cancer Res. 1985 Jul;45(7):3042–3047. [PubMed] [Google Scholar]
  78. Raymond W. A., Leong A. S. The relationship between growth fractions and oestrogen receptors in human breast carcinoma, as determined by immunohistochemical staining. J Pathol. 1989 Jul;158(3):203–211. doi: 10.1002/path.1711580306. [DOI] [PubMed] [Google Scholar]
  79. Ricketts D., Turnbull L., Ryall G., Bakhshi R., Rawson N. S., Gazet J. C., Nolan C., Coombes R. C. Estrogen and progesterone receptors in the normal female breast. Cancer Res. 1991 Apr 1;51(7):1817–1822. [PubMed] [Google Scholar]
  80. Rothman K. J., MacMahon B., Lin T. M., Lowe C. R., Mirra A. P., Ravnihar B., Salber E. J., Trichopoulos D., Yuasa S. Maternal age and birth rank of women with breast cancer. J Natl Cancer Inst. 1980 Oct;65(4):719–722. doi: 10.1093/jnci/65.4.719. [DOI] [PubMed] [Google Scholar]
  81. Russo J., Russo I. H. DNA labeling index and structure of the rat mammary gland as determinants of its susceptibility to carcinogenesis. J Natl Cancer Inst. 1978 Dec;61(6):1451–1459. [PubMed] [Google Scholar]
  82. SQUARTINI F. Responsiveness and progression of mammary tumors in high-cancer-strain mice. J Natl Cancer Inst. 1962 Apr;28:911–926. [PubMed] [Google Scholar]
  83. Sakthivel R., Hamdan M., Yang J., Guzman R. C., Nandi S. Effect of TGF-alpha on growth of normal human breast epithelial cells in serum-free primary culture using 3-dimensional collagen gels. Cell Biol Int. 1993 Apr;17(4):387–397. doi: 10.1006/cbir.1993.1077. [DOI] [PubMed] [Google Scholar]
  84. Sass B., Dunn T. B. Classification of mouse mammary tumors in Dunn's miscellaneous group including recently reported types. J Natl Cancer Inst. 1979 May;62(5):1287–1293. [PubMed] [Google Scholar]
  85. Seidman H., Stellman S. D., Mushinski M. H. A different perspective on breast cancer risk factors: some implications of the nonattributable risk. CA Cancer J Clin. 1982 Sep-Oct;32(5):301–313. doi: 10.3322/canjclin.32.5.301. [DOI] [PubMed] [Google Scholar]
  86. Shafie S. M., Grantham F. H. Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst. 1981 Jul;67(1):51–56. [PubMed] [Google Scholar]
  87. Sheffield L. G., Sinha Y. N., Welsch C. W. Cholera toxin treatment increases in vivo growth and development of the mouse mammary gland. Endocrinology. 1985 Nov;117(5):1864–1869. doi: 10.1210/endo-117-5-1864. [DOI] [PubMed] [Google Scholar]
  88. Shellabarger C. J., Stone J. P., Holtzman S. Rat differences in mammary tumor induction with estrogen and neutron radiation. J Natl Cancer Inst. 1978 Dec;61(6):1505–1508. [PubMed] [Google Scholar]
  89. Sinha D. K. Growth of mammary glands from monodispersed cells and susceptibility to 7,12-dimethylbenz[alpha]anthracene. Cancer Lett. 1981 Mar;12(1-2):111–119. doi: 10.1016/0304-3835(81)90046-x. [DOI] [PubMed] [Google Scholar]
  90. Strum J. M., Hillman E. A. Human breast epithelium in organ culture: effect of hormones on growth and morphology. In Vitro. 1981 Jan;17(1):33–43. doi: 10.1007/BF02618028. [DOI] [PubMed] [Google Scholar]
  91. Sylvester P. W., Aylsworth C. F., Van Vugt D. A., Meites J. Effects of alterations in early hormonal environment on development and hormone dependency of carcinogen-induced mammary tumors in rats. Cancer Res. 1983 Nov;43(11):5342–5346. [PubMed] [Google Scholar]
  92. Symmers W. S. Carcinoma of breast in trans-sexual individuals after surgical and hormonal interference with the primary and secondary sex characteristics. Br Med J. 1968 Apr 13;2(5597):83–85. doi: 10.1136/bmj.2.5597.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. TALWALKER P. K., MEITES J. Mammary lobulo-alveolar growth induced by anterior pituitary hormones in adrenoovariectomized and adreno-ovariectomized-hypophysectomized rats. Proc Soc Exp Biol Med. 1961 Aug-Sep;107:880–883. doi: 10.3181/00379727-107-26783. [DOI] [PubMed] [Google Scholar]
  94. Thomas D. B. Breast cancer in men. Epidemiol Rev. 1993;15(1):220–231. doi: 10.1093/oxfordjournals.epirev.a036108. [DOI] [PubMed] [Google Scholar]
  95. Thompson W. D., Janerich D. T. Maternal age at birth and risk of breast cancer in daughters. Epidemiology. 1990 Mar;1(2):101–106. doi: 10.1097/00001648-199003000-00004. [DOI] [PubMed] [Google Scholar]
  96. Topper Y. J., Freeman C. S. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev. 1980 Oct;60(4):1049–1106. doi: 10.1152/physrev.1980.60.4.1049. [DOI] [PubMed] [Google Scholar]
  97. Trichopoulos D. Hypothesis: does breast cancer originate in utero? Lancet. 1990 Apr 21;335(8695):939–940. doi: 10.1016/0140-6736(90)91000-z. [DOI] [PubMed] [Google Scholar]
  98. Trichopoulos D., MacMahon B., Cole P. Menopause and breast cancer risk. J Natl Cancer Inst. 1972 Mar;48(3):605–613. [PubMed] [Google Scholar]
  99. Warwick G. P. Effect of the cell cycle on carcinogenesis. Fed Proc. 1971 Nov-Dec;30(6):1760–1765. [PubMed] [Google Scholar]
  100. Weinstein I. B. Mitogenesis is only one factor in carcinogenesis. Science. 1991 Jan 25;251(4992):387–388. doi: 10.1126/science.1989073. [DOI] [PubMed] [Google Scholar]
  101. Welsch C. W. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res. 1985 Aug;45(8):3415–3443. [PubMed] [Google Scholar]
  102. Welsch C. W., McManus M. J. Stimulation of DNA synthesis by human placental lactogen or insulin in organ cultures of benign human breast tumors. Cancer Res. 1977 Jul;37(7 Pt 1):2257–2261. [PubMed] [Google Scholar]
  103. Williams G., Anderson E., Howell A., Watson R., Coyne J., Roberts S. A., Potten C. S. Oral contraceptive (OCP) use increases proliferation and decreases oestrogen receptor content of epithelial cells in the normal human breast. Int J Cancer. 1991 May 10;48(2):206–210. doi: 10.1002/ijc.2910480209. [DOI] [PubMed] [Google Scholar]
  104. Woolley G., Fekete E., Little C. C. Mammary Tumor Development in Mice Ovariectomized at Birth. Proc Natl Acad Sci U S A. 1939 Jun;25(6):277–279. doi: 10.1073/pnas.25.6.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Zajchowski D. A., Sager R., Webster L. Estrogen inhibits the growth of estrogen receptor-negative, but not estrogen receptor-positive, human mammary epithelial cells expressing a recombinant estrogen receptor. Cancer Res. 1993 Oct 15;53(20):5004–5011. [PubMed] [Google Scholar]
  106. du Bois M., Elias J. J. Subpopulations of cells in immature mouse mammary gland as detected by proliferative responses to hormones in organ culture. Dev Biol. 1984 Nov;106(1):70–75. doi: 10.1016/0012-1606(84)90062-9. [DOI] [PubMed] [Google Scholar]
  107. van Bogaert L. J. Effect of hormone on human mammary duct in vitro. Horm Metab Res. 1978 Jul;10(4):337–340. doi: 10.1055/s-0028-1093426. [DOI] [PubMed] [Google Scholar]
  108. van Nie R., Thung P. J. Responsiveness of mouse mammary tumours to pregnancy. Eur J Cancer. 1965 Jun;1(1):41–50. doi: 10.1016/0014-2964(65)90078-2. [DOI] [PubMed] [Google Scholar]