Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains (original) (raw)

Abstract

The regulated expression of neural cell adhesion molecule (NCAM) isoforms in the brain is critical for many neurodevelopmental processes including neurulation, axonal outgrowth, and the establishment of neuronal connectivity. We have investigated the expression of the major adult isoforms of NCAM (NCAM-180, NCAM-140, and NCAM-120) and its embryonic highly polysialylated isoform (PSA-NCAM) in the hippocampal region of postmortem brains from 10 schizophrenic and 11 control individuals. Immunohistochemical analysis with a monoclonal antibody recognizing the PSA-NCAM revealed immunoreactivity primarily in the dentate gyrus and in a subset of cells in the hilus region. We have observed a 20-95% reduction in the number of hilar PSA-NCAM-immunoreactive cells in the great majority of schizophrenic brains. The change in PSA-NCAM immunoreactivity is not obvious in other hippocampal subfields. Western blots of tissues from the hippocampal region (as well as from the frontal cortex) probed with a polyclonal antibody recognizing all NCAM isoforms did not reveal significant changes in the overall expression of NCAM, suggesting that the decrease in PSA-NCAM-immunoreactive cells may be related to post-translational processing of the molecule. The expression of this embryonic form of NCAM has been proposed to be related to synaptic rearrangement and plasticity. Therefore, the decrease in PSA-NCAM immunoreactivity in schizophrenic hippocampi may suggest an altered plasticity of this structure in a large proportion of schizophrenic brains. These findings may bear significance to the "neurodevelopmental hypothesis" of schizophrenia.

2785

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbarian S., Bunney W. E., Jr, Potkin S. G., Wigal S. B., Hagman J. O., Sandman C. A., Jones E. G. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry. 1993 Mar;50(3):169–177. doi: 10.1001/archpsyc.1993.01820150007001. [DOI] [PubMed] [Google Scholar]
  2. Akbarian S., Viñuela A., Kim J. J., Potkin S. G., Bunney W. E., Jr, Jones E. G. Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry. 1993 Mar;50(3):178–187. doi: 10.1001/archpsyc.1993.01820150016002. [DOI] [PubMed] [Google Scholar]
  3. Amaral D. G., Witter M. P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience. 1989;31(3):571–591. doi: 10.1016/0306-4522(89)90424-7. [DOI] [PubMed] [Google Scholar]
  4. Arnold S. E., Hyman B. T., Van Hoesen G. W., Damasio A. R. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry. 1991 Jul;48(7):625–632. doi: 10.1001/archpsyc.1991.01810310043008. [DOI] [PubMed] [Google Scholar]
  5. Arnold S. E., Lee V. M., Gur R. E., Trojanowski J. Q. Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10850–10854. doi: 10.1073/pnas.88.23.10850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benes F. M., McSparren J., Bird E. D., SanGiovanni J. P., Vincent S. L. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry. 1991 Nov;48(11):996–1001. doi: 10.1001/archpsyc.1991.01810350036005. [DOI] [PubMed] [Google Scholar]
  7. Berger T. W., Semple-Rowland S., Basset J. L. Hippocampal polymorph neurons are the cells of origin for ipsilateral association and commissural afferents to the dentate gyrus. Brain Res. 1981 Jun 29;215(1-2):329–336. doi: 10.1016/0006-8993(81)90512-6. [DOI] [PubMed] [Google Scholar]
  8. Bloom F. E. Advancing a neurodevelopmental origin for schizophrenia. Arch Gen Psychiatry. 1993 Mar;50(3):224–227. doi: 10.1001/archpsyc.1993.01820150074008. [DOI] [PubMed] [Google Scholar]
  9. Bonfanti L., Olive S., Poulain D. A., Theodosis D. T. Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience. 1992 Jul;49(2):419–436. doi: 10.1016/0306-4522(92)90107-d. [DOI] [PubMed] [Google Scholar]
  10. Browning M. D., Dudek E. M., Rapier J. L., Leonard S., Freedman R. Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry. 1993 Oct 15;34(8):529–535. doi: 10.1016/0006-3223(93)90195-j. [DOI] [PubMed] [Google Scholar]
  11. Chung W. W., Lagenaur C. F., Yan Y. M., Lund J. S. Developmental expression of neural cell adhesion molecules in the mouse neocortex and olfactory bulb. J Comp Neurol. 1991 Dec 8;314(2):290–305. doi: 10.1002/cne.903140207. [DOI] [PubMed] [Google Scholar]
  12. Conrad A. J., Abebe T., Austin R., Forsythe S., Scheibel A. B. Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Arch Gen Psychiatry. 1991 May;48(5):413–417. doi: 10.1001/archpsyc.1991.01810290025003. [DOI] [PubMed] [Google Scholar]
  13. Cremer H., Lange R., Christoph A., Plomann M., Vopper G., Roes J., Brown R., Baldwin S., Kraemer P., Scheff S. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature. 1994 Feb 3;367(6462):455–459. doi: 10.1038/367455a0. [DOI] [PubMed] [Google Scholar]
  14. Cunningham B. A., Hemperly J. J., Murray B. A., Prediger E. A., Brackenbury R., Edelman G. M. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science. 1987 May 15;236(4803):799–806. doi: 10.1126/science.3576199. [DOI] [PubMed] [Google Scholar]
  15. Dodd J., Morton S. B., Karagogeos D., Yamamoto M., Jessell T. M. Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron. 1988 Apr;1(2):105–116. doi: 10.1016/0896-6273(88)90194-8. [DOI] [PubMed] [Google Scholar]
  16. Doyle E., Nolan P. M., Bell R., Regan C. M. Hippocampal NCAM180 transiently increases sialylation during the acquisition and consolidation of a passive avoidance response in the adult rat. J Neurosci Res. 1992 Mar;31(3):513–523. doi: 10.1002/jnr.490310315. [DOI] [PubMed] [Google Scholar]
  17. Edelman G. M., Chuong C. M. Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7036–7040. doi: 10.1073/pnas.79.22.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Edelman G. M., Crossin K. L. Cell adhesion molecules: implications for a molecular histology. Annu Rev Biochem. 1991;60:155–190. doi: 10.1146/annurev.bi.60.070191.001103. [DOI] [PubMed] [Google Scholar]
  19. Eubanks J. H., Djabali M., Selleri L., Grandy D. K., Civelli O., McElligott D. L., Evans G. A. Structure and linkage of the D2 dopamine receptor and neural cell adhesion molecule genes on human chromosome 11q23. Genomics. 1992 Dec;14(4):1010–1018. doi: 10.1016/s0888-7543(05)80124-7. [DOI] [PubMed] [Google Scholar]
  20. Fraser S. E., Murray B. A., Chuong C. M., Edelman G. M. Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4222–4226. doi: 10.1073/pnas.81.13.4222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heckers S., Heinsen H., Geiger B., Beckmann H. Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry. 1991 Nov;48(11):1002–1008. doi: 10.1001/archpsyc.1991.01810350042006. [DOI] [PubMed] [Google Scholar]
  22. Landmesser L., Dahm L., Tang J. C., Rutishauser U. Polysialic acid as a regulator of intramuscular nerve branching during embryonic development. Neuron. 1990 May;4(5):655–667. doi: 10.1016/0896-6273(90)90193-j. [DOI] [PubMed] [Google Scholar]
  23. Le Gal La Salle G., Rougon G., Valin A. The embryonic form of neural cell surface molecule (E-NCAM) in the rat hippocampus and its reexpression on glial cells following kainic acid-induced status epilepticus. J Neurosci. 1992 Mar;12(3):872–882. doi: 10.1523/JNEUROSCI.12-03-00872.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lipska B. K., Jaskiw G. E., Weinberger D. R. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology. 1993 Aug;9(1):67–75. doi: 10.1038/npp.1993.44. [DOI] [PubMed] [Google Scholar]
  25. Miller P. D., Chung W. W., Lagenaur C. F., DeKosky S. T. Regional distribution of neural cell adhesion molecule (N-CAM) and L1 in human and rodent hippocampus. J Comp Neurol. 1993 Jan 15;327(3):341–349. doi: 10.1002/cne.903270303. [DOI] [PubMed] [Google Scholar]
  26. Miller P. D., Styren S. D., Lagenaur C. F., DeKosky S. T. Embryonic neural cell adhesion molecule (N-CAM) is elevated in the denervated rat dentate gyrus. J Neurosci. 1994 Jul;14(7):4217–4225. doi: 10.1523/JNEUROSCI.14-07-04217.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roberts G. W. Schizophrenia: a neuropathological perspective. Br J Psychiatry. 1991 Jan;158:8–17. doi: 10.1192/bjp.158.1.8. [DOI] [PubMed] [Google Scholar]
  28. Rougon G., Dubois C., Buckley N., Magnani J. L., Zollinger W. A monoclonal antibody against meningococcus group B polysaccharides distinguishes embryonic from adult N-CAM. J Cell Biol. 1986 Dec;103(6 Pt 1):2429–2437. doi: 10.1083/jcb.103.6.2429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saykin A. J., Shtasel D. L., Gur R. E., Kester D. B., Mozley L. H., Stafiniak P., Gur R. C. Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry. 1994 Feb;51(2):124–131. doi: 10.1001/archpsyc.1994.03950020048005. [DOI] [PubMed] [Google Scholar]
  30. Scheibel A. B., Conrad A. S. Hippocampal dysgenesis in mutant mouse and schizophrenic man: is there a relationship? Schizophr Bull. 1993;19(1):21–33. doi: 10.1093/schbul/19.1.21. [DOI] [PubMed] [Google Scholar]
  31. Seki T., Arai Y. Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res. 1993 Sep;17(4):265–290. doi: 10.1016/0168-0102(93)90111-3. [DOI] [PubMed] [Google Scholar]
  32. Seki T., Arai Y. Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci. 1993 Jun;13(6):2351–2358. doi: 10.1523/JNEUROSCI.13-06-02351.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sunshine J., Balak K., Rutishauser U., Jacobson M. Changes in neural cell adhesion molecule (NCAM) structure during vertebrate neural development. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5986–5990. doi: 10.1073/pnas.84.16.5986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Szele F. G., Dowling J. J., Gonzales C., Theveniau M., Rougon G., Chesselet M. F. Pattern of expression of highly polysialylated neural cell adhesion molecule in the developing and adult rat striatum. Neuroscience. 1994 May;60(1):133–144. doi: 10.1016/0306-4522(94)90209-7. [DOI] [PubMed] [Google Scholar]
  35. Thanos S., Bonhoeffer F., Rutishauser U. Fiber-fiber interaction and tectal cues influence the development of the chicken retinotectal projection. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1906–1910. doi: 10.1073/pnas.81.6.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Theodosis D. T., Rougon G., Poulain D. A. Retention of embryonic features by an adult neuronal system capable of plasticity: polysialylated neural cell adhesion molecule in the hypothalamo-neurohypophysial system. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5494–5498. doi: 10.1073/pnas.88.13.5494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tomasiewicz H., Ono K., Yee D., Thompson C., Goridis C., Rutishauser U., Magnuson T. Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron. 1993 Dec;11(6):1163–1174. doi: 10.1016/0896-6273(93)90228-j. [DOI] [PubMed] [Google Scholar]
  38. Venables P. H. Hippocampal function and schizophrenia. Experimental psychological evidence. Ann N Y Acad Sci. 1992 Jul 1;658:111–127. doi: 10.1111/j.1749-6632.1992.tb22841.x. [DOI] [PubMed] [Google Scholar]
  39. Weinberger D. R. A connectionist approach to the prefrontal cortex. J Neuropsychiatry Clin Neurosci. 1993 Summer;5(3):241–253. doi: 10.1176/jnp.5.3.241. [DOI] [PubMed] [Google Scholar]
  40. Weinberger D. R., Berman K. F., Suddath R., Torrey E. F. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry. 1992 Jul;149(7):890–897. doi: 10.1176/ajp.149.7.890. [DOI] [PubMed] [Google Scholar]