Transcription factors in inner ear development (original) (raw)

433

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe H., Wataya H., Amano O., Kondo H. Localization of nerve growth factor receptor in developing inner ear of rats. Acta Otolaryngol. 1991;111(4):691–698. doi: 10.3109/00016489109138401. [DOI] [PubMed] [Google Scholar]
  2. Anand V. T., Mann S. B., Dash R. J., Mehra Y. N. Auditory investigations in hypothyroidism. Acta Otolaryngol. 1989 Jul-Aug;108(1-2):83–87. doi: 10.3109/00016488909107396. [DOI] [PubMed] [Google Scholar]
  3. Avila M. A., Varela-Nieto I., Romero G., Mato J. M., Giraldez F., Van De Water T. R., Represa J. Brain-derived neurotrophic factor and neurotrophin-3 support the survival and neuritogenesis response of developing cochleovestibular ganglion neurons. Dev Biol. 1993 Sep;159(1):266–275. doi: 10.1006/dbio.1993.1239. [DOI] [PubMed] [Google Scholar]
  4. Baldwin C. T., Hoth C. F., Amos J. A., da-Silva E. O., Milunsky A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature. 1992 Feb 13;355(6361):637–638. doi: 10.1038/355637a0. [DOI] [PubMed] [Google Scholar]
  5. Bargman G. J., Gardner L. I. Deafness, hypothyroidism, and Pendred's syndrome. Pediatrics. 1967 Dec;40(6):1063–1064. [PubMed] [Google Scholar]
  6. Beebe J. S., Darling D. S., Chin W. W. 3,5,3'-triiodothyronine receptor auxiliary protein (TRAP) enhances receptor binding by interactions within the thyroid hormone response element. Mol Endocrinol. 1991 Jan;5(1):85–93. doi: 10.1210/mend-5-1-85. [DOI] [PubMed] [Google Scholar]
  7. Bradley D. J., Towle H. C., Young W. S., 3rd Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):439–443. doi: 10.1073/pnas.91.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradley D. J., Towle H. C., Young W. S., 3rd Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci. 1992 Jun;12(6):2288–2302. doi: 10.1523/JNEUROSCI.12-06-02288.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brent G. A., Moore D. D., Larsen P. R. Thyroid hormone regulation of gene expression. Annu Rev Physiol. 1991;53:17–35. doi: 10.1146/annurev.ph.53.030191.000313. [DOI] [PubMed] [Google Scholar]
  10. Burk D. T., Willhite C. C. Inner ear malformations induced by isotretinoin in hamster fetuses. Teratology. 1992 Aug;46(2):147–157. doi: 10.1002/tera.1420460208. [DOI] [PubMed] [Google Scholar]
  11. Chisaka O., Musci T. S., Capecchi M. R. Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature. 1992 Feb 6;355(6360):516–520. doi: 10.1038/355516a0. [DOI] [PubMed] [Google Scholar]
  12. Corwin J. T., Warchol M. E., Kelley M. W. Hair cell development. Curr Opin Neurobiol. 1993 Feb;3(1):32–37. doi: 10.1016/0959-4388(93)90032-t. [DOI] [PubMed] [Google Scholar]
  13. DeLong G. R., Stanbury J. B., Fierro-Benitez R. Neurological signs in congenital iodine-deficiency disorder (endemic cretinism). Dev Med Child Neurol. 1985 Jun;27(3):317–324. doi: 10.1111/j.1469-8749.1985.tb04542.x. [DOI] [PubMed] [Google Scholar]
  14. Debruyne F., Vanderschueren-Lodeweyckx M., Bastijns P. Hearing in congenital hypothyroidism. Audiology. 1983;22(4):404–409. doi: 10.3109/00206098309072800. [DOI] [PubMed] [Google Scholar]
  15. Deol M. S. The role of thyroxine in the differentiation of the organ of Corti. Acta Otolaryngol. 1976 May-Jun;81(5-6):429–435. doi: 10.3109/00016487609107497. [DOI] [PubMed] [Google Scholar]
  16. Dollé P., Ruberte E., Leroy P., Morriss-Kay G., Chambon P. Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development. 1990 Dec;110(4):1133–1151. doi: 10.1242/dev.110.4.1133. [DOI] [PubMed] [Google Scholar]
  17. Ekker M., Akimenko M. A., Bremiller R., Westerfield M. Regional expression of three homeobox transcripts in the inner ear of zebrafish embryos. Neuron. 1992 Jul;9(1):27–35. doi: 10.1016/0896-6273(92)90217-2. [DOI] [PubMed] [Google Scholar]
  18. Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Forge A., Li L., Corwin J. T., Nevill G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science. 1993 Mar 12;259(5101):1616–1619. doi: 10.1126/science.8456284. [DOI] [PubMed] [Google Scholar]
  20. Granström G. Retinoid-induced ear malformations. Otolaryngol Head Neck Surg. 1990 Nov;103(5 ):702–709. doi: 10.1177/019459989010300507. [DOI] [PubMed] [Google Scholar]
  21. He X., Rosenfeld M. G. Mechanisms of complex transcriptional regulation: implications for brain development. Neuron. 1991 Aug;7(2):183–196. doi: 10.1016/0896-6273(91)90257-z. [DOI] [PubMed] [Google Scholar]
  22. Hodgkinson C. A., Moore K. J., Nakayama A., Steingrímsson E., Copeland N. G., Jenkins N. A., Arnheiter H. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 1993 Jul 30;74(2):395–404. doi: 10.1016/0092-8674(93)90429-t. [DOI] [PubMed] [Google Scholar]
  23. Hodin R. A., Lazar M. A., Wintman B. I., Darling D. S., Koenig R. J., Larsen P. R., Moore D. D., Chin W. W. Identification of a thyroid hormone receptor that is pituitary-specific. Science. 1989 Apr 7;244(4900):76–79. doi: 10.1126/science.2539642. [DOI] [PubMed] [Google Scholar]
  24. Hogan B., Wright C. Developmental biology. The making of the ear. Nature. 1992 Feb 6;355(6360):494–495. doi: 10.1038/355494a0. [DOI] [PubMed] [Google Scholar]
  25. Hoth C. F., Milunsky A., Lipsky N., Sheffer R., Clarren S. K., Baldwin C. T. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet. 1993 Mar;52(3):455–462. [PMC free article] [PubMed] [Google Scholar]
  26. Jarvis B. L., Johnston M. C., Sulik K. K. Congenital malformations of the external, middle, and inner ear produced by isotretinoin exposure in mouse embryos. Otolaryngol Head Neck Surg. 1990 Apr;102(4):391–401. doi: 10.1177/019459989010200414. [DOI] [PubMed] [Google Scholar]
  27. Kelley M. W., Xu X. M., Wagner M. A., Warchol M. E., Corwin J. T. The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development. 1993 Dec;119(4):1041–1053. doi: 10.1242/dev.119.4.1041. [DOI] [PubMed] [Google Scholar]
  28. Kessel M., Gruss P. Murine developmental control genes. Science. 1990 Jul 27;249(4967):374–379. doi: 10.1126/science.1974085. [DOI] [PubMed] [Google Scholar]
  29. Lazar M. A. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993 Apr;14(2):184–193. doi: 10.1210/edrv-14-2-184. [DOI] [PubMed] [Google Scholar]
  30. Lefebvre P. P., Malgrange B., Staecker H., Moonen G., Van de Water T. R. Retinoic acid stimulates regeneration of mammalian auditory hair cells. Science. 1993 Apr 30;260(5108):692–695. doi: 10.1126/science.8480180. [DOI] [PubMed] [Google Scholar]
  31. Lufkin T., Dierich A., LeMeur M., Mark M., Chambon P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell. 1991 Sep 20;66(6):1105–1119. doi: 10.1016/0092-8674(91)90034-v. [DOI] [PubMed] [Google Scholar]
  32. Morell R., Friedman T. B., Moeljopawiro S., Hartono, Soewito, Asher J. H., Jr A frameshift mutation in the HuP2 paired domain of the probable human homolog of murine Pax-3 is responsible for Waardenburg syndrome type 1 in an Indonesian family. Hum Mol Genet. 1992 Jul;1(4):243–247. doi: 10.1093/hmg/1.4.243. [DOI] [PubMed] [Google Scholar]
  33. Morriss-Kay G. M., Murphy P., Hill R. E., Davidson D. R. Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the hindbrain of mouse embryos. EMBO J. 1991 Oct;10(10):2985–2995. doi: 10.1002/j.1460-2075.1991.tb07849.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Morriss-Kay G. Retinoic acid and craniofacial development: molecules and morphogenesis. Bioessays. 1993 Jan;15(1):9–15. doi: 10.1002/bies.950150103. [DOI] [PubMed] [Google Scholar]
  35. Murphy P., Hill R. E. Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development. 1991 Jan;111(1):61–74. doi: 10.1242/dev.111.1.61. [DOI] [PubMed] [Google Scholar]
  36. Murray M. B., Towle H. C. Identification of nuclear factors that enhance binding of the thyroid hormone receptor to a thyroid hormone response element. Mol Endocrinol. 1989 Sep;3(9):1434–1442. doi: 10.1210/mend-3-9-1434. [DOI] [PubMed] [Google Scholar]
  37. Nornes H. O., Dressler G. R., Knapik E. W., Deutsch U., Gruss P. Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development. 1990 Aug;109(4):797–809. doi: 10.1242/dev.109.4.797. [DOI] [PubMed] [Google Scholar]
  38. Pedersen A. D., Morton J. I., Trune D. R. Inner ear basic fibroblast growth factor in CBA/J, C3H/HeJ, and autoimmune Palmerston north mice. Hear Res. 1993 Apr;66(2):253–259. doi: 10.1016/0378-5955(93)90145-q. [DOI] [PubMed] [Google Scholar]
  39. Peters K., Ornitz D., Werner S., Williams L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol. 1993 Feb;155(2):423–430. doi: 10.1006/dbio.1993.1040. [DOI] [PubMed] [Google Scholar]
  40. Pirvola U., Ylikoski J., Palgi J., Lehtonen E., Arumäe U., Saarma M. Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9915–9919. doi: 10.1073/pnas.89.20.9915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Refetoff S., Weiss R. E., Usala S. J. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993 Jun;14(3):348–399. doi: 10.1210/edrv-14-3-348. [DOI] [PubMed] [Google Scholar]
  42. Represa J., Bernd P. Nerve growth factor and serum differentially regulate development of the embryonic otic vesicle and cochleovestibular ganglion in vitro. Dev Biol. 1989 Jul;134(1):21–29. doi: 10.1016/0012-1606(89)90074-2. [DOI] [PubMed] [Google Scholar]
  43. Represa J., León Y., Miner C., Giraldez F. The int-2 proto-oncogene is responsible for induction of the inner ear. Nature. 1991 Oct 10;353(6344):561–563. doi: 10.1038/353561a0. [DOI] [PubMed] [Google Scholar]
  44. Represa J., Sanchez A., Miner C., Lewis J., Giraldez F. Retinoic acid modulation of the early development of the inner ear is associated with the control of c-fos expression. Development. 1990 Dec;110(4):1081–1090. doi: 10.1242/dev.110.4.1081. [DOI] [PubMed] [Google Scholar]
  45. Represa J., Van de Water T. R., Bernd P. Temporal pattern of nerve growth factor receptor expression in developing cochlear and vestibular ganglia in quail and mouse. Anat Embryol (Berl) 1991;184(5):421–432. doi: 10.1007/BF01236048. [DOI] [PubMed] [Google Scholar]
  46. Ruberte E., Friederich V., Morriss-Kay G., Chambon P. Differential distribution patterns of CRABP I and CRABP II transcripts during mouse embryogenesis. Development. 1992 Aug;115(4):973–987. doi: 10.1242/dev.115.4.973. [DOI] [PubMed] [Google Scholar]
  47. Sher A. E. The embryonic and postnatal development of the inner ear of the mouse. Acta Otolaryngol Suppl. 1971;285:1–77. [PubMed] [Google Scholar]
  48. Sobkowicz H. M., Bereman B., Rose J. E. Organotypic development of the organ of Corti in culture. J Neurocytol. 1975 Oct;4(5):543–572. doi: 10.1007/BF01351537. [DOI] [PubMed] [Google Scholar]
  49. Takeda K., Balzano S., Sakurai A., DeGroot L. J., Refetoff S. Screening of nineteen unrelated families with generalized resistance to thyroid hormone for known point mutations in the thyroid hormone receptor beta gene and the detection of a new mutation. J Clin Invest. 1991 Feb;87(2):496–502. doi: 10.1172/JCI115023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Takeda K., Sakurai A., DeGroot L. J., Refetoff S. Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor-beta gene. J Clin Endocrinol Metab. 1992 Jan;74(1):49–55. doi: 10.1210/jcem.74.1.1727829. [DOI] [PubMed] [Google Scholar]
  51. Tassabehji M., Read A. P., Newton V. E., Harris R., Balling R., Gruss P., Strachan T. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature. 1992 Feb 13;355(6361):635–636. doi: 10.1038/355635a0. [DOI] [PubMed] [Google Scholar]
  52. Tassabehji M., Read A. P., Newton V. E., Patton M., Gruss P., Harris R., Strachan T. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat Genet. 1993 Jan;3(1):26–30. doi: 10.1038/ng0193-26. [DOI] [PubMed] [Google Scholar]
  53. Usala S. J., Bercu B. B., Refetoff S. Diverse abnormalities of the c-erbA beta thyroid hormone receptor gene in generalized thyroid hormone resistance. Adv Exp Med Biol. 1991;299:251–258. doi: 10.1007/978-1-4684-5973-9_15. [DOI] [PubMed] [Google Scholar]
  54. Uziel A., Gabrion J., Ohresser M., Legrand C. Effects of hypothyroidism on the structural development of the organ of Corti in the rat. Acta Otolaryngol. 1981 Nov-Dec;92(5-6):469–480. doi: 10.3109/00016488109133286. [DOI] [PubMed] [Google Scholar]
  55. Uziel A. Periods of sensitivity to thyroid hormone during the development of the organ of Corti. Acta Otolaryngol Suppl. 1986;429:23–27. doi: 10.3109/00016488609122726. [DOI] [PubMed] [Google Scholar]
  56. Warchol M. E., Lambert P. R., Goldstein B. J., Forge A., Corwin J. T. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science. 1993 Mar 12;259(5101):1619–1622. doi: 10.1126/science.8456285. [DOI] [PubMed] [Google Scholar]
  57. Yen P. M., Sugawara A., Refetoff S., Chin W. W. New insights on the mechanism(s) of the dominant negative effect of mutant thyroid hormone receptor in generalized resistance to thyroid hormone. J Clin Invest. 1992 Nov;90(5):1825–1831. doi: 10.1172/JCI116058. [DOI] [PMC free article] [PubMed] [Google Scholar]