Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (original) (raw)

Abstract

Oligodendrocytes and their progenitors (O-2A) express functional kainate- and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-preferring glutamate receptors. The physiological consequences of activation of these receptors were studied in purified rat cortical O-2A progenitors and in the primary oligodendrocyte cell line CG-4. Changes in the mRNA levels of a set of immediate early genes were studied and were correlated to intracellular Ca2+ concentration, as measured by fura-2 Ca2+ imaging. Both in CG-4 and in cortical O-2A progenitors, basal mRNA levels of NGFI-A were much higher than c-fos, c-jun, or jun-b. Glutamate, kainate, and AMPA greatly increased NGFI-A mRNA and protein by activation of membrane receptors in a Ca(2+)-dependent fashion. Agonists at non-N-methyl-D-aspartate receptors promoted transmembrane Ca2+ influx through voltage-dependent channels as well as kainate and/or AMPA channels. The influx of Ca2+ ions occurring through glutamate-gated channels was sufficient by itself to increase the expression of NGFI-A mRNA. AMPA receptors were found to be directly involved in intracellular Ca2+ and NGFI-A mRNA regulation, because the effects of kainate were greatly enhanced by cyclothiazide, an allosteric modulator that selectively suppresses desensitization of AMPA but not kainate receptors. Our results indicate that glutamate acting at AMPA receptors regulates immediate early gene expression in cells of the oligodendrocyte lineage by increasing intracellular calcium. Consequently, modulation of these receptor channels may have immediate effects at the genomic level and regulate oligodendrocyte development at critical stages.

3215

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bading H., Ginty D. D., Greenberg M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science. 1993 Apr 9;260(5105):181–186. doi: 10.1126/science.8097060. [DOI] [PubMed] [Google Scholar]
  2. Barres B. A., Koroshetz W. J., Swartz K. J., Chun L. L., Corey D. P. Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron. 1990 Apr;4(4):507–524. doi: 10.1016/0896-6273(90)90109-s. [DOI] [PubMed] [Google Scholar]
  3. Bhat N. R., Hauser K. F., Kindy M. S. Cell proliferation and protooncogene induction in oligodendroglial progenitors. J Neurosci Res. 1992 Jul;32(3):340–349. doi: 10.1002/jnr.490320306. [DOI] [PubMed] [Google Scholar]
  4. Blankenfeld Gv Gabriela v., Verkhratsky Alexej N., Kettenmann Helmut. Ca2+ Channel Expression in the Oligodendrocyte Lineage. Eur J Neurosci. 1992 Oct;4(11):1035–1048. doi: 10.1111/j.1460-9568.1992.tb00130.x. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Condorelli D. F., Dell'Albani P., Amico C., Kaczmarek L., Nicoletti F., Lukasiuk K., Stella A. M. Induction of primary response genes by excitatory amino acid receptor agonists in primary astroglial cultures. J Neurochem. 1993 Mar;60(3):877–885. doi: 10.1111/j.1471-4159.1993.tb03232.x. [DOI] [PubMed] [Google Scholar]
  7. Di Stasi A. M., Gallo V., Ceccarini M., Petrucci T. C. Neuronal fodrin proteolysis occurs independently of excitatory amino acid-induced neurotoxicity. Neuron. 1991 Mar;6(3):445–454. doi: 10.1016/0896-6273(91)90252-u. [DOI] [PubMed] [Google Scholar]
  8. Egebjerg J., Heinemann S. F. Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):755–759. doi: 10.1073/pnas.90.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fatatis A., Russell J. T. Spontaneous changes in intracellular calcium concentration in type I astrocytes from rat cerebral cortex in primary culture. Glia. 1992;5(2):95–104. doi: 10.1002/glia.440050203. [DOI] [PubMed] [Google Scholar]
  10. Fulton B. P., Burne J. F., Raff M. C. Visualization of O-2A progenitor cells in developing and adult rat optic nerve by quisqualate-stimulated cobalt uptake. J Neurosci. 1992 Dec;12(12):4816–4833. doi: 10.1523/JNEUROSCI.12-12-04816.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gallo V., Bertolotto A. Extracellular matrix of cultured glial cells: selective expression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors. Exp Cell Res. 1990 Apr;187(2):211–223. doi: 10.1016/0014-4827(90)90084-n. [DOI] [PubMed] [Google Scholar]
  12. Hardy R., Reynolds R. Neuron-oligodendroglial interactions during central nervous system development. J Neurosci Res. 1993 Oct 1;36(2):121–126. doi: 10.1002/jnr.490360202. [DOI] [PubMed] [Google Scholar]
  13. Hardy R., Reynolds R. Proliferation and differentiation potential of rat forebrain oligodendroglial progenitors both in vitro and in vivo. Development. 1991 Apr;111(4):1061–1080. doi: 10.1242/dev.111.4.1061. [DOI] [PubMed] [Google Scholar]
  14. Herschman H. R. Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem. 1991;60:281–319. doi: 10.1146/annurev.bi.60.070191.001433. [DOI] [PubMed] [Google Scholar]
  15. Hollmann M., Hartley M., Heinemann S. Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition. Science. 1991 May 10;252(5007):851–853. doi: 10.1126/science.1709304. [DOI] [PubMed] [Google Scholar]
  16. Hume R. I., Dingledine R., Heinemann S. F. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science. 1991 Aug 30;253(5023):1028–1031. doi: 10.1126/science.1653450. [DOI] [PubMed] [Google Scholar]
  17. LeVine S. M., Goldman J. E. Spatial and temporal patterns of oligodendrocyte differentiation in rat cerebrum and cerebellum. J Comp Neurol. 1988 Nov 15;277(3):441–455. doi: 10.1002/cne.902770309. [DOI] [PubMed] [Google Scholar]
  18. Lerea L. S., Butler L. S., McNamara J. O. NMDA and non-NMDA receptor-mediated increase of c-fos mRNA in dentate gyrus neurons involves calcium influx via different routes. J Neurosci. 1992 Aug;12(8):2973–2981. doi: 10.1523/JNEUROSCI.12-08-02973.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lerea L. S., McNamara J. O. Ionotropic glutamate receptor subtypes activate c-fos transcription by distinct calcium-requiring intracellular signaling pathways. Neuron. 1993 Jan;10(1):31–41. doi: 10.1016/0896-6273(93)90239-n. [DOI] [PubMed] [Google Scholar]
  20. Lerma J., Paternain A. V., Naranjo J. R., Mellström B. Functional kainate-selective glutamate receptors in cultured hippocampal neurons. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11688–11692. doi: 10.1073/pnas.90.24.11688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levi G., Gallo V., Ciotti M. T. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and "neuron-like" gamma-aminobutyric acid transport. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1504–1508. doi: 10.1073/pnas.83.5.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Louis J. C., Magal E., Muir D., Manthorpe M., Varon S. CG-4, a new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes. J Neurosci Res. 1992 Jan;31(1):193–204. doi: 10.1002/jnr.490310125. [DOI] [PubMed] [Google Scholar]
  23. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McKinnon R. D., Matsui T., Dubois-Dalcq M., Aaronson S. A. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron. 1990 Nov;5(5):603–614. doi: 10.1016/0896-6273(90)90215-2. [DOI] [PubMed] [Google Scholar]
  25. McMahon S. B., Monroe J. G. Role of primary response genes in generating cellular responses to growth factors. FASEB J. 1992 Jun;6(9):2707–2715. doi: 10.1096/fasebj.6.9.1612295. [DOI] [PubMed] [Google Scholar]
  26. McNaughton L. A., Hunt S. P. Regulation of gene expression in astrocytes by excitatory amino acids. Brain Res Mol Brain Res. 1992 Dec;16(3-4):261–266. doi: 10.1016/0169-328x(92)90234-3. [DOI] [PubMed] [Google Scholar]
  27. Partin K. M., Patneau D. K., Winters C. A., Mayer M. L., Buonanno A. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron. 1993 Dec;11(6):1069–1082. doi: 10.1016/0896-6273(93)90220-l. [DOI] [PubMed] [Google Scholar]
  28. Patneau D. K., Vyklicky L., Jr, Mayer M. L. Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J Neurosci. 1993 Aug;13(8):3496–3509. doi: 10.1523/JNEUROSCI.13-08-03496.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Patneau D. K., Wright P. W., Winters C., Mayer M. L., Gallo V. Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor. Neuron. 1994 Feb;12(2):357–371. doi: 10.1016/0896-6273(94)90277-1. [DOI] [PubMed] [Google Scholar]
  30. Raff M. C. Glial cell diversification in the rat optic nerve. Science. 1989 Mar 17;243(4897):1450–1455. doi: 10.1126/science.2648568. [DOI] [PubMed] [Google Scholar]
  31. Raff M. C., Miller R. H., Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983 Jun 2;303(5916):390–396. doi: 10.1038/303390a0. [DOI] [PubMed] [Google Scholar]
  32. Sheng M., Greenberg M. E. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 1990 Apr;4(4):477–485. doi: 10.1016/0896-6273(90)90106-p. [DOI] [PubMed] [Google Scholar]
  33. Sommer I., Schachner M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol. 1981 Apr 30;83(2):311–327. doi: 10.1016/0012-1606(81)90477-2. [DOI] [PubMed] [Google Scholar]
  34. Sontheimer H., Trotter J., Schachner M., Kettenmann H. Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture. Neuron. 1989 Feb;2(2):1135–1145. doi: 10.1016/0896-6273(89)90180-3. [DOI] [PubMed] [Google Scholar]
  35. Yamada K. A., Tang C. M. Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. J Neurosci. 1993 Sep;13(9):3904–3915. doi: 10.1523/JNEUROSCI.13-09-03904.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]