The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle (original) (raw)

Abstract

Many human tumors contain an activating mutation in one of the ras protooncogenes. Additionally, these tumor cells are often heteroploid and characterized by chromosome breaks and rearrangements that are consequences of the genomic instability that is thought to contribute to tumor progression. The concurrence of ras mutations and genomic instability in tumors prompted us to ask whether selective induction of an activated Ha-ras gene could render a genome unstable. The NIH 3T3 cells used in this study contained mutant p53 genes and carried a selectively inducible activated (EJ) Ha-ras transgene under the control of bacterial lactose regulatory elements. When stably transfected cells were induced to express activated Ha-ras by isopropyl beta-D-thiogalactoside administration, there was a marked increase in the number of gross chromosomal aberrations including acentric fragments, multicentric chromosomes, and double minutes, which occurred within the time frame of a single cell cycle from the time of induction. To confirm that these aberrations occurred within the first cell cycle after mutant Ha-ras induction, the cells were arrested in G1 phase by serum depletion and, subsequently, released by administration of isopropyl beta-D-thiogalactoside or serum. The mitoses from cells released with isopropyl beta-D-thiogalactoside contained a 3-fold elevation in the fraction of chromosomes containing aberrations compared to mitoses from parallel cell cultures that were released with serum. Thus, the induction of activated Ha-ras gene expression in these cells results in genomic instability that can be detected as aberrant chromosomes at the next mitosis.

5124

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldaz C. M., Conti C. J., Klein-Szanto A. J., Slaga T. J. Progressive dysplasia and aneuploidy are hallmarks of mouse skin papillomas: relevance to malignancy. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2029–2032. doi: 10.1073/pnas.84.7.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basu T. N., Gutmann D. H., Fletcher J. A., Glover T. W., Collins F. S., Downward J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature. 1992 Apr 23;356(6371):713–715. doi: 10.1038/356713a0. [DOI] [PubMed] [Google Scholar]
  3. Bischoff F. Z., Yim S. O., Pathak S., Grant G., Siciliano M. J., Giovanella B. C., Strong L. C., Tainsky M. A. Spontaneous abnormalities in normal fibroblasts from patients with Li-Fraumeni cancer syndrome: aneuploidy and immortalization. Cancer Res. 1990 Dec 15;50(24):7979–7984. [PubMed] [Google Scholar]
  4. Bokoch G. M., Der C. J. Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J. 1993 Jun;7(9):750–759. doi: 10.1096/fasebj.7.9.8330683. [DOI] [PubMed] [Google Scholar]
  5. Bos J. L. ras oncogenes in human cancer: a review. Cancer Res. 1989 Sep 1;49(17):4682–4689. [PubMed] [Google Scholar]
  6. Dooley W. C., Allison D. C. Non-random distribution of abnormal mitoses in heteroploid cell lines. Cytometry. 1992;13(5):462–468. doi: 10.1002/cyto.990130503. [DOI] [PubMed] [Google Scholar]
  7. Eliyahu D., Michalovitz D., Eliyahu S., Pinhasi-Kimhi O., Oren M. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8763–8767. doi: 10.1073/pnas.86.22.8763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feramisco J. R., Gross M., Kamata T., Rosenberg M., Sweet R. W. Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell. 1984 Aug;38(1):109–117. doi: 10.1016/0092-8674(84)90531-2. [DOI] [PubMed] [Google Scholar]
  9. Finlay C. A., Hinds P. W., Levine A. J. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 1989 Jun 30;57(7):1083–1093. doi: 10.1016/0092-8674(89)90045-7. [DOI] [PubMed] [Google Scholar]
  10. Giaccia A. J., Evans J. W., Brown J. M. Use of fluorescent in situ hybridization to detect chromosomal rearrangements in somatic cell hybrids. Genes Chromosomes Cancer. 1990 Sep;2(3):248–251. doi: 10.1002/gcc.2870020314. [DOI] [PubMed] [Google Scholar]
  11. Godwin A. K., Lieberman M. W. Early and late responses to induction of rasT24 expression in Rat-1 cells. Oncogene. 1990 Aug;5(8):1231–1241. [PubMed] [Google Scholar]
  12. Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell. 1992 Nov 13;71(4):543–546. doi: 10.1016/0092-8674(92)90586-2. [DOI] [PubMed] [Google Scholar]
  13. Heald R., McLoughlin M., McKeon F. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell. 1993 Aug 13;74(3):463–474. doi: 10.1016/0092-8674(93)80048-j. [DOI] [PubMed] [Google Scholar]
  14. Hicks G. G., Egan S. E., Greenberg A. H., Mowat M. Mutant p53 tumor suppressor alleles release ras-induced cell cycle growth arrest. Mol Cell Biol. 1991 Mar;11(3):1344–1352. doi: 10.1128/mcb.11.3.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hill R. P., Chambers A. F., Ling V., Harris J. F. Dynamic heterogeneity: rapid generation of metastatic variants in mouse B16 melanoma cells. Science. 1984 Jun 1;224(4652):998–1001. doi: 10.1126/science.6719130. [DOI] [PubMed] [Google Scholar]
  16. Ho P. T., Tucker R. W. Centriole ciliation and cell cycle variability during G1 phase of BALB/c 3T3 cells. J Cell Physiol. 1989 May;139(2):398–406. doi: 10.1002/jcp.1041390224. [DOI] [PubMed] [Google Scholar]
  17. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  18. Ichikawa T., Kyprianou N., Isaacs J. T. Genetic instability and the acquisition of metastatic ability by rat mammary cancer cells following v-H-ras oncogene transfection. Cancer Res. 1990 Oct 1;50(19):6349–6357. [PubMed] [Google Scholar]
  19. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  20. Lipkowitz S., Garry V. F., Kirsch I. R. Interlocus V-J recombination measures genomic instability in agriculture workers at risk for lymphoid malignancies. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5301–5305. doi: 10.1073/pnas.89.12.5301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu H. S., Scrable H., Villaret D. B., Lieberman M. A., Stambrook P. J. Control of Ha-ras-mediated mammalian cell transformation by Escherichia coli regulatory elements. Cancer Res. 1992 Feb 15;52(4):983–989. [PubMed] [Google Scholar]
  22. Livingstone L. R., White A., Sprouse J., Livanos E., Jacks T., Tlsty T. D. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 1992 Sep 18;70(6):923–935. doi: 10.1016/0092-8674(92)90243-6. [DOI] [PubMed] [Google Scholar]
  23. Miller B. M., Werner T., Weier H. U., Nüsse M. Analysis of radiation-induced micronuclei by fluorescence in situ hybridization (FISH) simultaneously using telomeric and centromeric DNA probes. Radiat Res. 1992 Aug;131(2):177–185. [PubMed] [Google Scholar]
  24. Mulcahy L. S., Smith M. R., Stacey D. W. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature. 1985 Jan 17;313(5999):241–243. doi: 10.1038/313241a0. [DOI] [PubMed] [Google Scholar]
  25. Perry M. E., Commane M., Stark G. R. Simian virus 40 large tumor antigen alone or two cooperating oncogenes convert REF52 cells to a state permissive for gene amplification. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8112–8116. doi: 10.1073/pnas.89.17.8112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reddy M. A., Langer S. J., Colman M. S., Ostrowski M. C. An enhancer element responsive to ras and fms signaling pathways is composed of two distinct nuclear factor binding sites. Mol Endocrinol. 1992 Jul;6(7):1051–1060. doi: 10.1210/mend.6.7.1324418. [DOI] [PubMed] [Google Scholar]
  27. Ren M., Drivas G., D'Eustachio P., Rush M. G. Ran/TC4: a small nuclear GTP-binding protein that regulates DNA synthesis. J Cell Biol. 1993 Jan;120(2):313–323. doi: 10.1083/jcb.120.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stark G. R. Regulation and mechanisms of mammalian gene amplification. Adv Cancer Res. 1993;61:87–113. doi: 10.1016/s0065-230x(08)60956-2. [DOI] [PubMed] [Google Scholar]
  29. Stenman G., Delorme E. O., Lau C. C., Sager R. Transfection with plasmid pSV2gptEJ induces chromosome rearrangements in CHEF cells. Proc Natl Acad Sci U S A. 1987 Jan;84(1):184–188. doi: 10.1073/pnas.84.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tlsty T. D., White A., Sanchez J. Suppression of gene amplification in human cell hybrids. Science. 1992 Mar 13;255(5050):1425–1427. doi: 10.1126/science.1542791. [DOI] [PubMed] [Google Scholar]
  31. Weier H. U., Zitzelsberger H. F., Gray J. W. Non-isotopical labeling of murine heterochromatin in situ by hybridization with in vitro-synthesized biotinylated gamma (major) satellite DNA. Biotechniques. 1991 Apr;10(4):498-502, 504-5. [PubMed] [Google Scholar]
  32. Windle B., Draper B. W., Yin Y. X., O'Gorman S., Wahl G. M. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev. 1991 Feb;5(2):160–174. doi: 10.1101/gad.5.2.160. [DOI] [PubMed] [Google Scholar]
  33. Yin Y., Tainsky M. A., Bischoff F. Z., Strong L. C., Wahl G. M. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell. 1992 Sep 18;70(6):937–948. doi: 10.1016/0092-8674(92)90244-7. [DOI] [PubMed] [Google Scholar]
  34. van den Berg S., Kaina B., Rahmsdorf H. J., Ponta H., Herrlich P. Involvement of fos in spontaneous and ultraviolet light-induced genetic changes. Mol Carcinog. 1991;4(6):460–466. doi: 10.1002/mc.2940040609. [DOI] [PubMed] [Google Scholar]