Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube (original) (raw)
Abstract
To study the process of ventricular specification during cardiogenesis, we examined the in situ expression of cardiac ventricular myosin light chain 2 (MLC-2v) mRNA during murine embryogenesis. As assessed by hybridization with a specific MLC-2v riboprobe, mRNA expression can be found in the ventricular region at day 8.0 postcoitum (pc). MLC-2v expression is high in the ventricular portion of the heart tube, with no detectable expression in the atrial or sinus venosus regions. The proximal outflow tract of the heart tube also expresses MLC-2v mRNA at minimally detectable levels at this time but then displays a temporally and spatially distinct pattern with expression well established in the proximal out-flow tract region adjacent to the ventricular segment by days 9-10 pc, eventually reaching levels comparable to the trabeculated ventricular myocardium. By day 11 pc, prior to the completion of septation, expression then becomes restricted to the ventricular region at and below the level of the atrioventricular cushion. Transgenic mice harboring a 250-base-pair MLC-2v promoter fragment fused to a luciferase reporter gene demonstrate reporter gene activity from at least day 9 pc. Ventricular region-restricted expression of the luciferase reporter in the embryonic heart, as assessed by immunofluorescence and direct assay of reporter activity in microdissected atrial and ventricular muscle specimens, was confirmed from at least day 15 pc on. Taken together, this provides evidence for early positional specification of MLC-2v gene expression in the primitive heart tube and indicates regional specification of part of the ventricular muscle gene program can precede ventricular septation during mammalian cardiogenesis. Since the 250-base-pair promoter fragment is active developmentally in transgenic mice, this establishes it as a molecular target for the process of ventricular specification in the developing heart tube.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ausoni S., De Nardi C., Moretti P., Gorza L., Schiaffino S. Developmental expression of rat cardiac troponin I mRNA. Development. 1991 Aug;112(4):1041–1051. doi: 10.1242/dev.112.4.1041. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Knowlton K. U., Zhu H., Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991 Dec;5(15):3037–3046. doi: 10.1096/fasebj.5.15.1835945. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Zhu H., Knowlton K. U., Miller-Hance W., van-Bilsen M., O'Brien T. X., Evans S. M. Transcriptional regulation during cardiac growth and development. Annu Rev Physiol. 1993;55:77–95. doi: 10.1146/annurev.ph.55.030193.000453. [DOI] [PubMed] [Google Scholar]
- González-Sánchez A., Bader D. Immunochemical analysis of myosin heavy chains in the developing chicken heart. Dev Biol. 1984 May;103(1):151–158. doi: 10.1016/0012-1606(84)90016-2. [DOI] [PubMed] [Google Scholar]
- HOLTZER H., MARSHALL J. M., Jr, FINCK H. An analysis of myogenesis by the use of fluorescent antimyosin. J Biophys Biochem Cytol. 1957 Sep 25;3(5):705–724. doi: 10.1083/jcb.3.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson S. A., Spencer M., Sen A., Kumar C., Siddiqui M. A., Chien K. R. Structure, organization, and expression of the rat cardiac myosin light chain-2 gene. Identification of a 250-base pair fragment which confers cardiac-specific expression. J Biol Chem. 1989 Oct 25;264(30):18142–18148. [PubMed] [Google Scholar]
- Henderson S. A., Xu Y. C., Chien K. R. Nucleotide sequence of full length cDNAs encoding rat cardiac myosin light chain-2. Nucleic Acids Res. 1988 May 25;16(10):4722–4722. doi: 10.1093/nar/16.10.4722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iannello R. C., Mar J. H., Ordahl C. P. Characterization of a promoter element required for transcription in myocardial cells. J Biol Chem. 1991 Feb 15;266(5):3309–3316. [PubMed] [Google Scholar]
- Knowlton K. U., Baracchini E., Ross R. S., Harris A. N., Henderson S. A., Evans S. M., Glembotski C. C., Chien K. R. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression. J Biol Chem. 1991 Apr 25;266(12):7759–7768. [PubMed] [Google Scholar]
- Lamers W. H., Wessels A., Verbeek F. J., Moorman A. F., Virágh S., Wenink A. C., Gittenberger-de Groot A. C., Anderson R. H. New findings concerning ventricular septation in the human heart. Implications for maldevelopment. Circulation. 1992 Oct;86(4):1194–1205. doi: 10.1161/01.cir.86.4.1194. [DOI] [PubMed] [Google Scholar]
- Lee K. J., Ross R. S., Rockman H. A., Harris A. N., O'Brien T. X., van Bilsen M., Shubeita H. E., Kandolf R., Brem G., Price J. Myosin light chain-2 luciferase transgenic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene. J Biol Chem. 1992 Aug 5;267(22):15875–15885. [PubMed] [Google Scholar]
- Lyons G. E., Schiaffino S., Sassoon D., Barton P., Buckingham M. Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol. 1990 Dec;111(6 Pt 1):2427–2436. doi: 10.1083/jcb.111.6.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Navankasattusas S., Zhu H., Garcia A. V., Evans S. M., Chien K. R. A ubiquitous factor (HF-1a) and a distinct muscle factor (HF-1b/MEF-2) form an E-box-independent pathway for cardiac muscle gene expression. Mol Cell Biol. 1992 Apr;12(4):1469–1479. doi: 10.1128/mcb.12.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollock R., Treisman R. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 1991 Dec;5(12A):2327–2341. doi: 10.1101/gad.5.12a.2327. [DOI] [PubMed] [Google Scholar]
- Sassoon D. A., Garner I., Buckingham M. Transcripts of alpha-cardiac and alpha-skeletal actins are early markers for myogenesis in the mouse embryo. Development. 1988 Sep;104(1):155–164. doi: 10.1242/dev.104.1.155. [DOI] [PubMed] [Google Scholar]
- Shubeita H. E., Thorburn J., Chien K. R. Microinjection of antibodies and expression vectors into living myocardial cells. Development of a novel approach to identify candidate genes that regulate cardiac growth and hypertrophy. Circulation. 1992 Jun;85(6):2236–2246. doi: 10.1161/01.cir.85.6.2236. [DOI] [PubMed] [Google Scholar]
- Wessels A., Vermeulen J. L., Verbeek F. J., Virágh S., Kálmán F., Lamers W. H., Moorman A. F. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. III. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system. Anat Rec. 1992 Jan;232(1):97–111. doi: 10.1002/ar.1092320111. [DOI] [PubMed] [Google Scholar]
- Wessels A., Vermeulen J. L., Virágh S., Kálmán F., Lamers W. H., Moorman A. F. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. II. An immunohistochemical analysis of myosin heavy chain isoform expression patterns in the embryonic heart. Anat Rec. 1991 Mar;229(3):355–368. doi: 10.1002/ar.1092290309. [DOI] [PubMed] [Google Scholar]
- Yu Y. T., Breitbart R. E., Smoot L. B., Lee Y., Mahdavi V., Nadal-Ginard B. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 1992 Sep;6(9):1783–1798. doi: 10.1101/gad.6.9.1783. [DOI] [PubMed] [Google Scholar]
- Zeller R., Bloch K. D., Williams B. S., Arceci R. J., Seidman C. E. Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev. 1987 Sep;1(7):693–698. doi: 10.1101/gad.1.7.693. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Shafiq S. A., Bader D. Detection of a ventricular-specific myosin heavy chain in adult and developing chicken heart. J Cell Biol. 1986 Apr;102(4):1480–1484. doi: 10.1083/jcb.102.4.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu H., Garcia A. V., Ross R. S., Evans S. M., Chien K. R. A conserved 28-base-pair element (HF-1) in the rat cardiac myosin light-chain-2 gene confers cardiac-specific and alpha-adrenergic-inducible expression in cultured neonatal rat myocardial cells. Mol Cell Biol. 1991 Apr;11(4):2273–2281. doi: 10.1128/mcb.11.4.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Groot I. J., Lamers W. H., Moorman A. F. Isomyosin expression patterns during rat heart morphogenesis: an immunohistochemical study. Anat Rec. 1989 Jul;224(3):365–373. doi: 10.1002/ar.1092240305. [DOI] [PubMed] [Google Scholar]
- de Jong F., Geerts W. J., Lamers W. H., Los J. A., Moorman A. F. Isomyosin expression patterns in tubular stages of chicken heart development: a 3-D immunohistochemical analysis. Anat Embryol (Berl) 1987;177(1):81–90. doi: 10.1007/BF00325291. [DOI] [PubMed] [Google Scholar]