The free radical in pyruvate formate-lyase is located on glycine-734 (original) (raw)
Abstract
Pyruvate formate-lyase (acetyl-CoA:formate C-acetyltransferase, EC 2.3.1.54) from anaerobic Escherichia coli cells converts pyruvate to acetyl-CoA and formate by a unique homolytic mechanism that involves a free radical harbored in the protein structure. By EPR spectroscopy of selectively 13C-labeled enzyme, the radical (g = 2.0037) has been assigned to carbon-2 of a glycine residue. Estimated hyperfine coupling constants to the central 13C nucleus (A parallel = 4.9 mT and A perpendicular = 0.1 mT) and to 13C nuclei in alpha and beta positions agree with literature data for glycine radical models. N-coupling was verified through uniform 15N-labeling. The large 1H hyperfine splitting (1.5 mT) dominating the EPR spectrum was assigned to the alpha proton, which in the enzyme radical is readily solvent-exchangeable. Oxygen destruction of the radical produced two unique fragments (82 and 3 kDa) of the constituent polypeptide chain. The N-terminal block on the small fragment was identified by mass spectrometry as an oxalyl residue that derives from Gly-734, thus assigning the primary structural glycyl radical position. The carbon-centered radical is probably resonance-stabilized through the adjacent carboxamide groups in the polypeptide main chain and could be comparable energetically with other known protein radicals carrying the unpaired electron in tyrosine or tryptophan residues.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CLARK A. J. Genetic analysis of a "double male" strain of Escherichia coli K-12. Genetics. 1963 Jan;48:105–120. doi: 10.1093/genetics/48.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casadaban M. J., Cohen S. N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. doi: 10.1073/pnas.76.9.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conradt H., Hohmann-Berger M., Hohmann H. P., Blaschkowski H. P., Knappe J. Pyruvate formate-lyase (inactive form) and pyruvate formate-lyase activating enzyme of Escherichia coli: isolation and structural properties. Arch Biochem Biophys. 1984 Jan;228(1):133–142. doi: 10.1016/0003-9861(84)90054-7. [DOI] [PubMed] [Google Scholar]
- Debus R. J., Barry B. A., Babcock G. T., McIntosh L. Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci U S A. 1988 Jan;85(2):427–430. doi: 10.1073/pnas.85.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon H. B. The conversion of glyoxyloyl groups into glycyl groups and their formation from maleyl residues. Biochem J. 1968 Mar;107(1):124–126. doi: 10.1042/bj1070124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eliasson R., Fontecave M., Jörnvall H., Krook M., Pontis E., Reichard P. The anaerobic ribonucleoside triphosphate reductase from Escherichia coli requires S-adenosylmethionine as a cofactor. Proc Natl Acad Sci U S A. 1990 May;87(9):3314–3318. doi: 10.1073/pnas.87.9.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gautney L. L., Jr, Miyagawa I. ESR study of hydrogen exchange reaction in x-ray-irradiated glycine. Radiat Res. 1975 Apr;62(1):12–17. [PubMed] [Google Scholar]
- Karthein R., Dietz R., Nastainczyk W., Ruf H. H. Higher oxidation states of prostaglandin H synthase. EPR study of a transient tyrosyl radical in the enzyme during the peroxidase reaction. Eur J Biochem. 1988 Jan 15;171(1-2):313–320. doi: 10.1111/j.1432-1033.1988.tb13792.x. [DOI] [PubMed] [Google Scholar]
- Kirino Y., Taniguchi H. An ESR study of the acid dissociation of NH protons. 1. Linear peptide radicals and related radicals. J Am Chem Soc. 1976 Aug 18;98(17):5089–5096. doi: 10.1021/ja00433a007. [DOI] [PubMed] [Google Scholar]
- Knappe J., Neugebauer F. A., Blaschkowski H. P., Gänzler M. Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1332–1335. doi: 10.1073/pnas.81.5.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knappe J., Sawers G. A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol Rev. 1990 Aug;6(4):383–398. doi: 10.1111/j.1574-6968.1990.tb04108.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Moss M. L., Frey P. A. Activation of lysine 2,3-aminomutase by S-adenosylmethionine. J Biol Chem. 1990 Oct 25;265(30):18112–18115. [PubMed] [Google Scholar]
- Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordlund P., Sjöberg B. M., Eklund H. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature. 1990 Jun 14;345(6276):593–598. doi: 10.1038/345593a0. [DOI] [PubMed] [Google Scholar]
- Plaga W., Frank R., Knappe J. Catalytic-site mapping of pyruvate formate lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate). Eur J Biochem. 1988 Dec 15;178(2):445–450. doi: 10.1111/j.1432-1033.1988.tb14468.x. [DOI] [PubMed] [Google Scholar]
- Reichard P., Ehrenberg A. Ribonucleotide reductase--a radical enzyme. Science. 1983 Aug 5;221(4610):514–519. doi: 10.1126/science.6306767. [DOI] [PubMed] [Google Scholar]
- Rödel W., Plaga W., Frank R., Knappe J. Primary structures of Escherichia coli pyruvate formate-lyase and pyruvate-formate-lyase-activating enzyme deduced from the DNA nucleotide sequences. Eur J Biochem. 1988 Oct 15;177(1):153–158. doi: 10.1111/j.1432-1033.1988.tb14356.x. [DOI] [PubMed] [Google Scholar]
- Sawers G., Wagner A. F., Böck A. Transcription initiation at multiple promoters of the pfl gene by E sigma 70-dependent transcription in vitro and heterologous expression in Pseudomonas putida in vivo. J Bacteriol. 1989 Sep;171(9):4930–4937. doi: 10.1128/jb.171.9.4930-4937.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Sivaraja M., Goodin D. B., Smith M., Hoffman B. M. Identification by ENDOR of Trp191 as the free-radical site in cytochrome c peroxidase compound ES. Science. 1989 Aug 18;245(4919):738–740. doi: 10.1126/science.2549632. [DOI] [PubMed] [Google Scholar]
- Stubbe J. Ribonucleotide reductases: amazing and confusing. J Biol Chem. 1990 Apr 5;265(10):5329–5332. [PubMed] [Google Scholar]
- Taniguchi H., Kirino Y. An ESR study of the acid dissociation of NH protons. 2. Cyclic peptide radicals and related radicals. J Am Chem Soc. 1977 May 25;99(11):3625–3631. doi: 10.1021/ja00453a019. [DOI] [PubMed] [Google Scholar]
- Taylor A. L., Trotter C. D. Revised linkage map of Escherichia coli. Bacteriol Rev. 1967 Dec;31(4):332–353. doi: 10.1128/br.31.4.332-353.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unkrig V., Neugebauer F. A., Knappe J. The free radical of pyruvate formate-lyase. Characterization by EPR spectroscopy and involvement in catalysis as studied with the substrate-analogue hypophosphite. Eur J Biochem. 1989 Oct 1;184(3):723–728. doi: 10.1111/j.1432-1033.1989.tb15072.x. [DOI] [PubMed] [Google Scholar]
- Whittaker M. M., Whittaker J. W. A tyrosine-derived free radical in apogalactose oxidase. J Biol Chem. 1990 Jun 15;265(17):9610–9613. [PubMed] [Google Scholar]