Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction (original) (raw)

Abstract

The arbitrarily primed polymerase chain reaction (AP-PCR) [Welsh, J. & McClelland, M. (1990) Nucleic Acids Res. 18, 7213-7218] has been used to detect somatic genetic alterations in tumors of the colon and rectum. DNA fingerprints generated by single arbitrary primers were compared between normal and tumor tissue of the same individuals. AP-PCR bands showing decreased and increased intensities in tumor tissue DNA, relative to normal, have been cloned after reamplification with the same arbitrary primer. Standard restriction fragment length polymorphism and Southern blot analyses show that these DNA sequences have undergone allelic losses and gains, respectively, in the tumor cell genome. The deleted sequences have been assigned to the short arm of chromosome 17 by PCR of somatic hamster/human cell hybrids and linkage analysis. These results show the ability of the AP-PCR to detect and isolate, in a single step, DNA sequences representing two of the genetic alterations that underlie the aneuploidy of cancer cells: losses of heterozygosity and chromosomal gains. Altogether, they also show the quantitative nature of the amplification levels obtained in vitro by AP-PCR, which thus provides the basis for an alternative molecular approach to cancer cytogenetics.

10065

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop J. M. Molecular themes in oncogenesis. Cell. 1991 Jan 25;64(2):235–248. doi: 10.1016/0092-8674(91)90636-d. [DOI] [PubMed] [Google Scholar]
  2. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  3. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  4. Fey M. F., Wells R. A., Wainscoat J. S., Thein S. L. Assessment of clonality in gastrointestinal cancer by DNA fingerprinting. J Clin Invest. 1988 Nov;82(5):1532–1537. doi: 10.1172/JCI113762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilliland G., Perrin S., Blanchard K., Bunn H. F. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2725–2729. doi: 10.1073/pnas.87.7.2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. James C. D., Carlbom E., Nordenskjold M., Collins V. P., Cavenee W. K. Mitotic recombination of chromosome 17 in astrocytomas. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2858–2862. doi: 10.1073/pnas.86.8.2858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jeffreys A. J., MacLeod A., Tamaki K., Neil D. L., Monckton D. G. Minisatellite repeat coding as a digital approach to DNA typing. Nature. 1991 Nov 21;354(6350):204–209. doi: 10.1038/354204a0. [DOI] [PubMed] [Google Scholar]
  8. Jeffreys A. J., Wilson V., Thein S. L. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985 Mar 7;314(6006):67–73. doi: 10.1038/314067a0. [DOI] [PubMed] [Google Scholar]
  9. Kondoleon S., van Tuinen P., Ledbetter D. H., Vissing H., Litt M. An anonymous single-copy clone, pC63, from chromosome 17q23-qter identifies a frequent RFLP [HGM9 No. D17S21]. Nucleic Acids Res. 1987 Nov 11;15(21):9096–9096. doi: 10.1093/nar/15.21.9096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mullis K. B., Faloona F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
  11. Nakano H., Yamamoto F., Neville C., Evans D., Mizuno T., Perucho M. Isolation of transforming sequences of two human lung carcinomas: structural and functional analysis of the activated c-K-ras oncogenes. Proc Natl Acad Sci U S A. 1984 Jan;81(1):71–75. doi: 10.1073/pnas.81.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roninson I. B., Chin J. E., Choi K. G., Gros P., Housman D. E., Fojo A., Shen D. W., Gottesman M. M., Pastan I. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4538–4542. doi: 10.1073/pnas.83.12.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  15. Smit V. T., Cornelisse C. J., De Jong D., Dijkshoorn N. J., Peters A. A., Fleuren G. J. Analysis of tumor heterogeneity in a patient with synchronously occurring female genital tract malignancies by DNA flow cytometry, DNA fingerprinting, and immunohistochemistry. Cancer. 1988 Sep 15;62(6):1146–1152. doi: 10.1002/1097-0142(19880915)62:6<1146::aid-cncr2820620618>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  16. Thein S. L., Jeffreys A. J., Gooi H. C., Cotter F., Flint J., O'Connor N. T., Weatherall D. J., Wainscoat J. S. Detection of somatic changes in human cancer DNA by DNA fingerprint analysis. Br J Cancer. 1987 Apr;55(4):353–356. doi: 10.1038/bjc.1987.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vogelstein B., Fearon E. R., Kern S. E., Hamilton S. R., Preisinger A. C., Nakamura Y., White R. Allelotype of colorectal carcinomas. Science. 1989 Apr 14;244(4901):207–211. doi: 10.1126/science.2565047. [DOI] [PubMed] [Google Scholar]
  18. Weinberg R. A. Tumor suppressor genes. Science. 1991 Nov 22;254(5035):1138–1146. doi: 10.1126/science.1659741. [DOI] [PubMed] [Google Scholar]
  19. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Welsh J., McClelland M. Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acids Res. 1991 Oct 11;19(19):5275–5279. doi: 10.1093/nar/19.19.5275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Welsh J., Petersen C., McClelland M. Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Res. 1991 Jan 25;19(2):303–306. doi: 10.1093/nar/19.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wieland I., Bolger G., Asouline G., Wigler M. A method for difference cloning: gene amplification following subtractive hybridization. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2720–2724. doi: 10.1073/pnas.87.7.2720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. de Jong D., Voetdijk B. M., Kluin-Nelemans J. C., van Ommen G. J., Kluin P. M. Somatic changes in B-lymphoproliferative disorders (B-LPD) detected by DNA-fingerprinting. Br J Cancer. 1988 Dec;58(6):773–775. doi: 10.1038/bjc.1988.306. [DOI] [PMC free article] [PubMed] [Google Scholar]