Insulin-like growth factor-1 is a potent neuronal rescue agent after hypoxic-ischemic injury in fetal lambs (original) (raw)
Abstract
This study was designed to determine the potential of IGF-1 as a neuronal rescue agent after cerebral ischemia. Unanesthetized late gestation fetal sheep were subjected to 30-min cerebral ischemia by inflation of carotid artery occluder cuffs. 2 h later either 0.1 microgram rhIGF-1, 1 microgram rhIGF-1, 10 micrograms rhIGF-1, or vehicle was infused into a lateral cerebral ventricle over 1 h. Histologic outcome was assessed 5 d later. Overall neuronal loss was reduced with 0.1 microgram (P < 0.05) and 1 microgram (P < 0.002) rhIGF-1, but treatment with 10 micrograms was not effective. With 1 microgram rhIGF-1 neuronal loss scores were significantly lower in brain regions examined including cortex, hippocampus, and striatum, whereas with 0.1 microgram rhIGF-1 the parietal cortex and thalamus were not improved and the improvement seen in other regions was less than with 1 microgram rhIGF-1. Treatment with 1 microgram rhIGF-1 also delayed the onset of seizures and reduced their incidence. Moreover, the secondary phase of cytotoxic edema was reduced and delayed in onset. We conclude that low dose rhIGF-1 therapy promotes neuronal rescue after cerebral hypoxic-ischemic injury in utero, but the effect is dose dependent. Importantly, rhIGF-1 is effective and nontoxic when administered 2 h after the hypoxic ischemic insult. This distinguishes IGF-1 from most other neuroprotective therapies and suggests clinical application may be possible.
Full Text
The Full Text of this article is available as a PDF (221.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azzopardi D., Wyatt J. S., Cady E. B., Delpy D. T., Baudin J., Stewart A. L., Hope P. L., Hamilton P. A., Reynolds E. O. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res. 1989 May;25(5):445–451. doi: 10.1203/00006450-198905000-00004. [DOI] [PubMed] [Google Scholar]
- Bach M. A., Shen-Orr Z., Lowe W. L., Jr, Roberts C. T., Jr, LeRoith D. Insulin-like growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain. Brain Res Mol Brain Res. 1991 Apr;10(1):43–48. doi: 10.1016/0169-328x(91)90054-2. [DOI] [PubMed] [Google Scholar]
- Barres B. A., Hart I. K., Coles H. S., Burne J. F., Voyvodic J. T., Richardson W. D., Raff M. C. Cell death in the oligodendrocyte lineage. J Neurobiol. 1992 Nov;23(9):1221–1230. doi: 10.1002/neu.480230912. [DOI] [PubMed] [Google Scholar]
- Baskin D. G., Wilcox B. J., Figlewicz D. P., Dorsa D. M. Insulin and insulin-like growth factors in the CNS. Trends Neurosci. 1988 Mar;11(3):107–111. doi: 10.1016/0166-2236(88)90155-5. [DOI] [PubMed] [Google Scholar]
- Beilharz E. J., Klempt N. D., Klempt M., Sirimanne E., Dragunow M., Gluckman P. D. Differential expression of insulin-like growth factor binding proteins (IGFBP) 4 and 5 mRNA in the rat brain after transient hypoxic-ischemic injury. Brain Res Mol Brain Res. 1993 May;18(3):209–215. doi: 10.1016/0169-328x(93)90191-q. [DOI] [PubMed] [Google Scholar]
- Beilharz E. J., Williams C. E., Dragunow M., Sirimanne E. S., Gluckman P. D. Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Brain Res Mol Brain Res. 1995 Mar;29(1):1–14. doi: 10.1016/0169-328x(94)00217-3. [DOI] [PubMed] [Google Scholar]
- Bennet L., Johnston B. M., Vale W. W., Gluckman P. D. The effects of corticotrophin-releasing factor and two antagonists on breathing movements in fetal sheep. J Physiol. 1990 Feb;421:1–11. doi: 10.1113/jphysiol.1990.sp017930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohannon N. J., Corp E. S., Wilcox B. J., Figlewicz D. P., Dorsa D. M., Baskin D. G. Localization of binding sites for insulin-like growth factor-I (IGF-I) in the rat brain by quantitative autoradiography. Brain Res. 1988 Mar 22;444(2):205–213. doi: 10.1016/0006-8993(88)90931-6. [DOI] [PubMed] [Google Scholar]
- Bondy C., Werner H., Roberts C. T., Jr, LeRoith D. Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience. 1992;46(4):909–923. doi: 10.1016/0306-4522(92)90193-6. [DOI] [PubMed] [Google Scholar]
- Cheng B., Mattson M. P. IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J Neurosci. 1992 Apr;12(4):1558–1566. doi: 10.1523/JNEUROSCI.12-04-01558.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Mello S. R., Galli C., Ciotti T., Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10989–10993. doi: 10.1073/pnas.90.23.10989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas R. G., Gluckman P. D., Ball K., Breier B., Shaw J. H. The effects of infusion of insulinlike growth factor (IGF) I, IGF-II, and insulin on glucose and protein metabolism in fasted lambs. J Clin Invest. 1991 Aug;88(2):614–622. doi: 10.1172/JCI115346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fawthrop D. J., Boobis A. R., Davies D. S. Mechanisms of cell death. Arch Toxicol. 1991;65(6):437–444. doi: 10.1007/BF01977355. [DOI] [PubMed] [Google Scholar]
- Florini J. R., Ewton D. Z., Falen S. L., Van Wyk J. J. Biphasic concentration dependency of stimulation of myoblast differentiation by somatomedins. Am J Physiol. 1986 May;250(5 Pt 1):C771–C778. doi: 10.1152/ajpcell.1986.250.5.C771. [DOI] [PubMed] [Google Scholar]
- Galli C., Meucci O., Scorziello A., Werge T. M., Calissano P., Schettini G. Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci. 1995 Feb;15(2):1172–1179. doi: 10.1523/JNEUROSCI.15-02-01172.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gammeltoft S., Haselbacher G. K., Humbel R. E., Fehlmann M., Van Obberghen E. Two types of receptor for insulin-like growth factors in mammalian brain. EMBO J. 1985 Dec 16;4(13A):3407–3412. doi: 10.1002/j.1460-2075.1985.tb04097.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Segura L. M., Pérez J., Pons S., Rejas M. T., Torres-Alemán I. Localization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain. Brain Res. 1991 Sep 27;560(1-2):167–174. doi: 10.1016/0006-8993(91)91228-s. [DOI] [PubMed] [Google Scholar]
- Geier A., Haimshon M., Beery R., Hemi R., Lunenfeld B. Insulinlike growth factor-1 inhibits cell death induced by cycloheximide in MCF-7 cells: a model system for analyzing control of cell death. In Vitro Cell Dev Biol. 1992 Nov-Dec;28A(11-12):725–729. doi: 10.1007/BF02631060. [DOI] [PubMed] [Google Scholar]
- Gluckman P. D., Williams C. E. When and why do brain cells die? Dev Med Child Neurol. 1992 Nov;34(11):1010–1014. doi: 10.1111/j.1469-8749.1992.tb11407.x. [DOI] [PubMed] [Google Scholar]
- Gluckman P., Klempt N., Guan J., Mallard C., Sirimanne E., Dragunow M., Klempt M., Singh K., Williams C., Nikolics K. A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem Biophys Res Commun. 1992 Jan 31;182(2):593–599. doi: 10.1016/0006-291x(92)91774-k. [DOI] [PubMed] [Google Scholar]
- Groenendaal F., Veenhoven R. H., van der Grond J., Jansen G. H., Witkamp T. D., de Vries L. S. Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res. 1994 Feb;35(2):148–151. doi: 10.1203/00006450-199402000-00004. [DOI] [PubMed] [Google Scholar]
- Guan J., Williams C., Gunning M., Mallard C., Gluckman P. The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats. J Cereb Blood Flow Metab. 1993 Jul;13(4):609–616. doi: 10.1038/jcbfm.1993.79. [DOI] [PubMed] [Google Scholar]
- Guler H. P., Zapf J., Froesch E. R. Short-term metabolic effects of recombinant human insulin-like growth factor I in healthy adults. N Engl J Med. 1987 Jul 16;317(3):137–140. doi: 10.1056/NEJM198707163170303. [DOI] [PubMed] [Google Scholar]
- Guler H. P., Zapf J., Scheiwiller E., Froesch E. R. Recombinant human insulin-like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4889–4893. doi: 10.1073/pnas.85.13.4889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hellström-Westas L., Rosén I., Svenningsen N. W. Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed. 1995 Jan;72(1):F34–F38. doi: 10.1136/fn.72.1.f34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanje M., Skottner A., Sjöberg J., Lundborg G. Insulin-like growth factor I (IGF-I) stimulates regeneration of the rat sciatic nerve. Brain Res. 1989 May 8;486(2):396–398. doi: 10.1016/0006-8993(89)90531-3. [DOI] [PubMed] [Google Scholar]
- Klein H. C., Krop-Van Gastel W., Go K. G., Korf J. Prediction of specific damage or infarction from the measurement of tissue impedance following repetitive brain ischaemia in the rat. Neuropathol Appl Neurobiol. 1993 Feb;19(1):57–65. doi: 10.1111/j.1365-2990.1993.tb00405.x. [DOI] [PubMed] [Google Scholar]
- Klempt N. D., Klempt M., Gunn A. J., Singh K., Gluckman P. D. Expression of insulin-like growth factor-binding protein 2 (IGF-BP 2) following transient hypoxia-ischemia in the infant rat brain. Brain Res Mol Brain Res. 1992 Sep;15(1-2):55–61. doi: 10.1016/0169-328x(92)90151-z. [DOI] [PubMed] [Google Scholar]
- Knusel B., Michel P. P., Schwaber J. S., Hefti F. Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J Neurosci. 1990 Feb;10(2):558–570. doi: 10.1523/JNEUROSCI.10-02-00558.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laron Z., Anin S., Klipper-Aurbach Y., Klinger B. Effects of insulin-like growth factor on linear growth, head circumference, and body fat in patients with Laron-type dwarfism. Lancet. 1992 May 23;339(8804):1258–1261. doi: 10.1016/0140-6736(92)91594-x. [DOI] [PubMed] [Google Scholar]
- Levene M. L., Kornberg J., Williams T. H. The incidence and severity of post-asphyxial encephalopathy in full-term infants. Early Hum Dev. 1985 May;11(1):21–26. doi: 10.1016/0378-3782(85)90115-x. [DOI] [PubMed] [Google Scholar]
- MacManus J. P., Buchan A. M., Hill I. E., Rasquinha I., Preston E. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett. 1993 Dec 24;164(1-2):89–92. doi: 10.1016/0304-3940(93)90864-h. [DOI] [PubMed] [Google Scholar]
- Mallard E. C., Williams C. E., Johnston B. M., Gunning M. I., Davis S., Gluckman P. D. Repeated episodes of umbilical cord occlusion in fetal sheep lead to preferential damage to the striatum and sensitize the heart to further insults. Pediatr Res. 1995 Jun;37(6):707–713. doi: 10.1203/00006450-199506000-00006. [DOI] [PubMed] [Google Scholar]
- Mehmet H., Yue X., Squier M. V., Lorek A., Cady E., Penrice J., Sarraf C., Wylezinska M., Kirkbride V., Cooper C. Increased apoptosis in the cingulate sulcus of newborn piglets following transient hypoxia-ischaemia is related to the degree of high energy phosphate depletion during the insult. Neurosci Lett. 1994 Nov 7;181(1-2):121–125. doi: 10.1016/0304-3940(94)90574-6. [DOI] [PubMed] [Google Scholar]
- Mueller R. V., Hunt T. K., Tokunaga A., Spencer E. M. The effect of insulinlike growth factor I on wound healing variables and macrophages in rats. Arch Surg. 1994 Mar;129(3):262–265. doi: 10.1001/archsurg.1994.01420270038008. [DOI] [PubMed] [Google Scholar]
- Neff N. T., Prevette D., Houenou L. J., Lewis M. E., Glicksman M. A., Yin Q. W., Oppenheim R. W. Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. J Neurobiol. 1993 Dec;24(12):1578–1588. doi: 10.1002/neu.480241203. [DOI] [PubMed] [Google Scholar]
- Nieto-Sampedro M., Lewis E. R., Cotman C. W., Manthorpe M., Skaper S. D., Barbin G., Longo F. M., Varon S. Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site. Science. 1982 Aug 27;217(4562):860–861. doi: 10.1126/science.7100931. [DOI] [PubMed] [Google Scholar]
- Ocrant I., Valentino K. L., Eng L. F., Hintz R. L., Wilson D. M., Rosenfeld R. G. Structural and immunohistochemical characterization of insulin-like growth factor I and II receptors in the murine central nervous system. Endocrinology. 1988 Aug;123(2):1023–1034. doi: 10.1210/endo-123-2-1023. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Tarduchy G., Collins M. K., García I., López-Rivas A. Insulin-like growth factor-I inhibits apoptosis in IL-3-dependent hemopoietic cells. J Immunol. 1992 Jul 15;149(2):535–540. [PubMed] [Google Scholar]
- Rotwein P., Burgess S. K., Milbrandt J. D., Krause J. E. Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci U S A. 1988 Jan;85(1):265–269. doi: 10.1073/pnas.85.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sara V. R., Hall K., Von Holtz H., Humbel R., Sjögren B., Wetterberg L. Evidence for the presence of specific receptors for insulin-like growth factors 1 (IGE-1) and 2 (IGF-2) and insulin throughout the adult human brain. Neurosci Lett. 1982 Dec 23;34(1):39–44. doi: 10.1016/0304-3940(82)90089-1. [DOI] [PubMed] [Google Scholar]
- Sara V. R., Uvnäs-Moberg K., Uvnäs B., Hall K., Wetterberg L., Posloncec B., Goiny M. The distribution of somatomedins in the nervous system of the cat and their release following neural stimulation. Acta Physiol Scand. 1982 Aug;115(4):467–470. doi: 10.1111/j.1748-1716.1982.tb07105.x. [DOI] [PubMed] [Google Scholar]
- Schlaefke M. E., See W. R., Loeschcke H. H. Ventilatory response to alterations of H+ ion concentration in small areas of the ventral medullary surface. Respir Physiol. 1970 Sep;10(2):198–212. doi: 10.1016/0034-5687(70)90083-6. [DOI] [PubMed] [Google Scholar]
- Sei Y., Von Lubitz K. J., Basile A. S., Borner M. M., Lin R. C., Skolnick P., Fossom L. H. Internucleosomal DNA fragmentation in gerbil hippocampus following forebrain ischemia. Neurosci Lett. 1994 Apr 25;171(1-2):179–182. doi: 10.1016/0304-3940(94)90634-3. [DOI] [PubMed] [Google Scholar]
- Skottner A., Clark R. G., Fryklund L., Robinson I. C. Growth responses in a mutant dwarf rat to human growth hormone and recombinant human insulin-like growth factor I. Endocrinology. 1989 May;124(5):2519–2526. doi: 10.1210/endo-124-5-2519. [DOI] [PubMed] [Google Scholar]
- Smith M. L., Auer R. N., Siesjö B. K. The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol. 1984;64(4):319–332. doi: 10.1007/BF00690397. [DOI] [PubMed] [Google Scholar]
- Svrzic D., Schubert D. Insulin-like growth factor 1 supports embryonic nerve cell survival. Biochem Biophys Res Commun. 1990 Oct 15;172(1):54–60. doi: 10.1016/s0006-291x(05)80172-x. [DOI] [PubMed] [Google Scholar]
- Tan W. K., Williams C. E., Gunn A. J., Mallard C. E., Gluckman P. D. Suppression of postischemic epileptiform activity with MK-801 improves neural outcome in fetal sheep. Ann Neurol. 1992 Nov;32(5):677–682. doi: 10.1002/ana.410320511. [DOI] [PubMed] [Google Scholar]
- Vannucci R. C. Mechanisms of perinatal hypoxic-ischemic brain damage. Semin Perinatol. 1993 Oct;17(5):330–337. [PubMed] [Google Scholar]
- Volpe J. J. Brain injury in the premature infant--current concepts of pathogenesis and prevention. Biol Neonate. 1992;62(4):231–242. doi: 10.1159/000243876. [DOI] [PubMed] [Google Scholar]
- Werner H., Woloschak M., Adamo M., Shen-Orr Z., Roberts C. T., Jr, LeRoith D. Developmental regulation of the rat insulin-like growth factor I receptor gene. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7451–7455. doi: 10.1073/pnas.86.19.7451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams C. E., Gluckman P. D. Real-time spectral intensity analysis of the EEG on a common microcomputer. J Neurosci Methods. 1990 Apr;32(1):9–13. doi: 10.1016/0165-0270(90)90066-o. [DOI] [PubMed] [Google Scholar]
- Williams C. E., Gunn A. J., Mallard C., Gluckman P. D. Outcome after ischemia in the developing sheep brain: an electroencephalographic and histological study. Ann Neurol. 1992 Jan;31(1):14–21. doi: 10.1002/ana.410310104. [DOI] [PubMed] [Google Scholar]
- Williams C. E., Gunn A. J., Synek B., Gluckman P. D. Delayed seizures occurring with hypoxic-ischemic encephalopathy in the fetal sheep. Pediatr Res. 1990 Jun;27(6):561–565. doi: 10.1203/00006450-199006000-00004. [DOI] [PubMed] [Google Scholar]
- Williams C. E., Gunn A., Gluckman P. D. Time course of intracellular edema and epileptiform activity following prenatal cerebral ischemia in sheep. Stroke. 1991 Apr;22(4):516–521. doi: 10.1161/01.str.22.4.516. [DOI] [PubMed] [Google Scholar]
- Wong E. A., Ohlsen S. M., Godfredson J. A., Dean D. M., Wheaton J. E. Cloning of ovine insulin-like growth factor-I cDNAs: heterogeneity in the mRNA population. DNA. 1989 Nov;8(9):649–657. doi: 10.1089/dna.1.1989.8.649. [DOI] [PubMed] [Google Scholar]
- Wyatt J. S., Edwards A. D., Azzopardi D., Reynolds E. O. Magnetic resonance and near infrared spectroscopy for investigation of perinatal hypoxic-ischaemic brain injury. Arch Dis Child. 1989 Jul;64(7 Spec No):953–963. doi: 10.1136/adc.64.7_spec_no.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yager J., Towfighi J., Vannucci R. C. Influence of mild hypothermia on hypoxic-ischemic brain damage in the immature rat. Pediatr Res. 1993 Oct;34(4):525–529. doi: 10.1203/00006450-199310000-00029. [DOI] [PubMed] [Google Scholar]
- Yamaguchi F., Itano T., Miyamoto O., Janjua N. A., Ohmoto T., Hosokawa K., Hatase O. Increase of extracellular insulin-like growth factor I (IGF-I) concentration following electrolytical lesion in rat hippocampus. Neurosci Lett. 1991 Jul 22;128(2):273–276. doi: 10.1016/0304-3940(91)90278-2. [DOI] [PubMed] [Google Scholar]
- Yao D. L., West N. R., Bondy C. A., Brenner M., Hudson L. D., Zhou J., Collins G. H., Webster H. D. Cryogenic spinal cord injury induces astrocytic gene expression of insulin-like growth factor I and insulin-like growth factor binding protein 2 during myelin regeneration. J Neurosci Res. 1995 Apr 1;40(5):647–659. doi: 10.1002/jnr.490400510. [DOI] [PubMed] [Google Scholar]