Lack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection (original) (raw)

Abstract

Although recombinant adenoviruses are attractive vectors for gene transfer to airway epithelia, they have proven to be relatively inefficient. To investigate the mechanisms of adenovirus-mediated gene transfer to airway epithelia, we examined the role of adenovirus fiber and penton base, the two proteins involved in attachment to and entry of virus into the cell. We used human airway epithelia grown under conditions that allow differentiation and development of a ciliated apical surface that closely resembles the in vivo condition. We found that addition of fiber protein inhibited virus binding and vector-mediated gene transfer to immature airway epithelia, as well as to primary cultures of rat hepatocytes and HeLa cells. However, fiber protein had no effect on vector binding and gene transfer to ciliated airway epithelia. We obtained similar results with addition of penton base protein: the protein inhibited gene transfer to immature epithelia, whereas there was no effect with ciliated epithelia. Moreover, infection was not attenuated with an adenovirus containing a mutation in penton base that prevents the interaction with cell surface integrins. These data suggest that the receptors required for efficient infection by adenovirus are either not present or not available on the apical surface of ciliated human airway epithelia. The results explain the reason for inefficient gene transfer and suggest approaches for improvement.

Full Text

The Full Text of this article is available as a PDF (357.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai M., Campisi L., Freimuth P. Vitronectin receptor antibodies inhibit infection of HeLa and A549 cells by adenovirus type 12 but not by adenovirus type 2. J Virol. 1994 Sep;68(9):5925–5932. doi: 10.1128/jvi.68.9.5925-5932.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bai M., Harfe B., Freimuth P. Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol. 1993 Sep;67(9):5198–5205. doi: 10.1128/jvi.67.9.5198-5205.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997 Feb 28;275(5304):1320–1323. doi: 10.1126/science.275.5304.1320. [DOI] [PubMed] [Google Scholar]
  4. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breeze R. G., Wheeldon E. B. The cells of the pulmonary airways. Am Rev Respir Dis. 1977 Oct;116(4):705–777. doi: 10.1164/arrd.1977.116.4.705. [DOI] [PubMed] [Google Scholar]
  6. Crystal R. G., McElvaney N. G., Rosenfeld M. A., Chu C. S., Mastrangeli A., Hay J. G., Brody S. L., Jaffe H. A., Eissa N. T., Danel C. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet. 1994 Sep;8(1):42–51. doi: 10.1038/ng0994-42. [DOI] [PubMed] [Google Scholar]
  7. Crystal R. G. Transfer of genes to humans: early lessons and obstacles to success. Science. 1995 Oct 20;270(5235):404–410. doi: 10.1126/science.270.5235.404. [DOI] [PubMed] [Google Scholar]
  8. Defer C., Belin M. T., Caillet-Boudin M. L., Boulanger P. Human adenovirus-host cell interactions: comparative study with members of subgroups B and C. J Virol. 1990 Aug;64(8):3661–3673. doi: 10.1128/jvi.64.8.3661-3673.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldman M. J., Wilson J. M. Expression of alpha v beta 5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway. J Virol. 1995 Oct;69(10):5951–5958. doi: 10.1128/jvi.69.10.5951-5958.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldman M. J., Wilson J. M. Expression of alpha v beta 5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway. J Virol. 1995 Oct;69(10):5951–5958. doi: 10.1128/jvi.69.10.5951-5958.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greber U. F., Willetts M., Webster P., Helenius A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell. 1993 Nov 5;75(3):477–486. doi: 10.1016/0092-8674(93)90382-z. [DOI] [PubMed] [Google Scholar]
  12. Grubb B. R., Pickles R. J., Ye H., Yankaskas J. R., Vick R. N., Engelhardt J. F., Wilson J. M., Johnson L. G., Boucher R. C. Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature. 1994 Oct 27;371(6500):802–806. doi: 10.1038/371802a0. [DOI] [PubMed] [Google Scholar]
  13. Hay J. G., McElvaney N. G., Herena J., Crystal R. G. Modification of nasal epithelial potential differences of individuals with cystic fibrosis consequent to local administration of a normal CFTR cDNA adenovirus gene transfer vector. Hum Gene Ther. 1995 Nov;6(11):1487–1496. doi: 10.1089/hum.1995.6.11-1487. [DOI] [PubMed] [Google Scholar]
  14. Hogg J. C., Irving W. L., Porter H., Evans M., Dunnill M. S., Fleming K. In situ hybridization studies of adenoviral infections of the lung and their relationship to follicular bronchiectasis. Am Rev Respir Dis. 1989 Jun;139(6):1531–1535. doi: 10.1164/ajrccm/139.6.1531. [DOI] [PubMed] [Google Scholar]
  15. Kasahara N., Dozy A. M., Kan Y. W. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science. 1994 Nov 25;266(5189):1373–1376. doi: 10.1126/science.7973726. [DOI] [PubMed] [Google Scholar]
  16. Knowles M. R., Hohneker K. W., Zhou Z., Olsen J. C., Noah T. L., Hu P. C., Leigh M. W., Engelhardt J. F., Edwards L. J., Jones K. R. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med. 1995 Sep 28;333(13):823–831. doi: 10.1056/NEJM199509283331302. [DOI] [PubMed] [Google Scholar]
  17. Kondo M., Finkbeiner W. E., Widdicombe J. H. Simple technique for culture of highly differentiated cells from dog tracheal epithelium. Am J Physiol. 1991 Aug;261(2 Pt 1):L106–L117. doi: 10.1152/ajplung.1991.261.2.L106. [DOI] [PubMed] [Google Scholar]
  18. Mathias P., Wickham T., Moore M., Nemerow G. Multiple adenovirus serotypes use alpha v integrins for infection. J Virol. 1994 Oct;68(10):6811–6814. doi: 10.1128/jvi.68.10.6811-6814.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Persson R., Svensson U., Everitt E. Virus receptor interaction in the adenovirus system. II. Capping and cooperative binding of virions on HeLa cells. J Virol. 1983 Jun;46(3):956–963. doi: 10.1128/jvi.46.3.956-963.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Persson R., Wohlfart C., Svensson U., Everitt E. Virus-receptor interaction in the adenovirus system: characterization of the positive cooperative binding of virions on HeLa cells. J Virol. 1985 Apr;54(1):92–97. doi: 10.1128/jvi.54.1.92-97.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pickles R. J., Barker P. M., Ye H., Boucher R. C. Efficient adenovirus-mediated gene transfer to basal but not columnar cells of cartilaginous airway epithelia. Hum Gene Ther. 1996 May 20;7(8):921–931. doi: 10.1089/hum.1996.7.8-921. [DOI] [PubMed] [Google Scholar]
  22. Prince G. A., Porter D. D., Jenson A. B., Horswood R. L., Chanock R. M., Ginsberg H. S. Pathogenesis of adenovirus type 5 pneumonia in cotton rats (Sigmodon hispidus). J Virol. 1993 Jan;67(1):101–111. doi: 10.1128/jvi.67.1.101-111.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rich D. P., Couture L. A., Cardoza L. M., Guiggio V. M., Armentano D., Espino P. C., Hehir K., Welsh M. J., Smith A. E., Gregory R. J. Development and analysis of recombinant adenoviruses for gene therapy of cystic fibrosis. Hum Gene Ther. 1993 Aug;4(4):461–476. doi: 10.1089/hum.1993.4.4-461. [DOI] [PubMed] [Google Scholar]
  24. Roelvink P. W., Kovesdi I., Wickham T. J. Comparative analysis of adenovirus fiber-cell interaction: adenovirus type 2 (Ad2) and Ad9 utilize the same cellular fiber receptor but use different binding strategies for attachment. J Virol. 1996 Nov;70(11):7614–7621. doi: 10.1128/jvi.70.11.7614-7621.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seth P. Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. J Virol. 1994 Feb;68(2):1204–1206. doi: 10.1128/jvi.68.2.1204-1206.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smythe W. R., Hwang H. C., Elshami A. A., Amin K. M., Albelda S. M., Kaiser L. R. Differential sensitivity of thoracic malignant tumors to adenovirus-mediated drug sensitization gene therapy. J Thorac Cardiovasc Surg. 1995 Apr;109(4):626–631. doi: 10.1016/S0022-5223(95)70342-X. [DOI] [PubMed] [Google Scholar]
  27. Welsh M. J., Zabner J., Graham S. M., Smith A. E., Moscicki R., Wadsworth S. Adenovirus-mediated gene transfer for cystic fibrosis: Part A. Safety of dose and repeat administration in the nasal epithelium. Part B. Clinical efficacy in the maxillary sinus. Hum Gene Ther. 1995 Feb;6(2):205–218. doi: 10.1089/hum.1995.6.2-205. [DOI] [PubMed] [Google Scholar]
  28. Wickham T. J., Filardo E. J., Cheresh D. A., Nemerow G. R. Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol. 1994 Oct;127(1):257–264. doi: 10.1083/jcb.127.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wickham T. J., Roelvink P. W., Brough D. E., Kovesdi I. Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol. 1996 Nov;14(11):1570–1573. doi: 10.1038/nbt1196-1570. [DOI] [PubMed] [Google Scholar]
  30. Wilson J. M. Adenoviruses as gene-delivery vehicles. N Engl J Med. 1996 May 2;334(18):1185–1187. doi: 10.1056/NEJM199605023341809. [DOI] [PubMed] [Google Scholar]
  31. Yamaya M., Finkbeiner W. E., Chun S. Y., Widdicombe J. H. Differentiated structure and function of cultures from human tracheal epithelium. Am J Physiol. 1992 Jun;262(6 Pt 1):L713–L724. doi: 10.1152/ajplung.1992.262.6.L713. [DOI] [PubMed] [Google Scholar]
  32. Zabner J., Couture L. A., Gregory R. J., Graham S. M., Smith A. E., Welsh M. J. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell. 1993 Oct 22;75(2):207–216. doi: 10.1016/0092-8674(93)80063-k. [DOI] [PubMed] [Google Scholar]
  33. Zabner J., Ramsey B. W., Meeker D. P., Aitken M. L., Balfour R. P., Gibson R. L., Launspach J., Moscicki R. A., Richards S. M., Standaert T. A. Repeat administration of an adenovirus vector encoding cystic fibrosis transmembrane conductance regulator to the nasal epithelium of patients with cystic fibrosis. J Clin Invest. 1996 Mar 15;97(6):1504–1511. doi: 10.1172/JCI118573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zabner J., Zeiher B. G., Friedman E., Welsh M. J. Adenovirus-mediated gene transfer to ciliated airway epithelia requires prolonged incubation time. J Virol. 1996 Oct;70(10):6994–7003. doi: 10.1128/jvi.70.10.6994-7003.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]