Molecular single-cell analysis reveals that CD5-positive peripheral blood B cells in healthy humans are characterized by rearranged Vkappa genes lacking somatic mutation (original) (raw)

Abstract

B cells expressing the CD5 cell surface antigen are involved in certain B cell malignancies and autoimmune diseases. From studies in the mouse, it emerged that CD5+ B cells represent a separate lineage of B lymphocytes that, in contrast to conventional (CD5-) B cells, are not driven into T cell-dependent immune responses in which rearranged variable (V) region genes are diversified by somatic hypermutation. Against this background it came as a surprise that human disease-involved CD5-positive autoreactive B cells as well as B cell chronic lymphocytic leukemias can harbor somatically mutated V region genes. Recent V gene analyses on CD5+ B cells in healthy adults did not give rise to a clear picture about the fraction of somatically mutated among all CD5+ B cells. In this work we used a molecular single-cell analysis to determine reliably the frequency of mutated CD5+ B cells in healthy humans: single, kappa light chain-expressing CD5+ peripheral blood B cells were isolated by flow cytometry, and rearranged Vkappa genes were amplified by PCR. From one donor, CD5+CD19+ B cells were analyzed. Since CD5+ B cells were found among IgM+IgD+ and IgM+IgD- cells (but almost not among class-switched cells) from two other donors, individual cells corresponding to these IgM-expressing subsets were investigated separately. The sequence analysis of rearranged Vkappa genes revealed that most if not all CD5+ B cells in healthy humans carry unmutated V region genes. From one of the donors, a novel polymorphic Jkappa2 gene segment was identified. To explain the discrepancy between the frequent occurrence of disease-associated somatically mutated CD5+ B cells and the low incidence or absence of somatic mutation in normal CD5+ B cells, we speculate that CD5+ B cells usually do not participate in germinal center reactions, but if they occasionally do so, they may be at an increased risk to become involved in autoimmune diseases or B cell malignancies.

Full Text

The Full Text of this article is available as a PDF (294.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold L. W., Pennell C. A., McCray S. K., Clarke S. H. Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J Exp Med. 1994 May 1;179(5):1585–1595. doi: 10.1084/jem.179.5.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbas C. F., 3rd, Collet T. A., Amberg W., Roben P., Binley J. M., Hoekstra D., Cababa D., Jones T. M., Williamson R. A., Pilkington G. R. Molecular profile of an antibody response to HIV-1 as probed by combinatorial libraries. J Mol Biol. 1993 Apr 5;230(3):812–823. doi: 10.1006/jmbi.1993.1203. [DOI] [PubMed] [Google Scholar]
  3. Berek C., Berger A., Apel M. Maturation of the immune response in germinal centers. Cell. 1991 Dec 20;67(6):1121–1129. doi: 10.1016/0092-8674(91)90289-b. [DOI] [PubMed] [Google Scholar]
  4. Betz A. G., Milstein C., González-Fernández A., Pannell R., Larson T., Neuberger M. S. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell. 1994 Apr 22;77(2):239–248. doi: 10.1016/0092-8674(94)90316-6. [DOI] [PubMed] [Google Scholar]
  5. Bhat N. M., Kantor A. B., Bieber M. M., Stall A. M., Herzenberg L. A., Teng N. N. The ontogeny and functional characteristics of human B-1 (CD5+ B) cells. Int Immunol. 1992 Feb;4(2):243–252. doi: 10.1093/intimm/4.2.243. [DOI] [PubMed] [Google Scholar]
  6. Bridges S. L., Jr, Lee S. K., Johnson M. L., Lavelle J. C., Fowler P. G., Koopman W. J., Schroeder H. W., Jr Somatic mutation and CDR3 lengths of immunoglobulin kappa light chains expressed in patients with rheumatoid arthritis and in normal individuals. J Clin Invest. 1995 Aug;96(2):831–841. doi: 10.1172/JCI118129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cai J., Humphries C., Richardson A., Tucker P. W. Extensive and selective mutation of a rearranged VH5 gene in human B cell chronic lymphocytic leukemia. J Exp Med. 1992 Oct 1;176(4):1073–1081. doi: 10.1084/jem.176.4.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Caligaris-Cappio F. B-chronic lymphocytic leukemia: a malignancy of anti-self B cells. Blood. 1996 Apr 1;87(7):2615–2620. [PubMed] [Google Scholar]
  9. Casali P., Notkins A. L. Probing the human B-cell repertoire with EBV: polyreactive antibodies and CD5+ B lymphocytes. Annu Rev Immunol. 1989;7:513–535. doi: 10.1146/annurev.iy.07.040189.002501. [DOI] [PubMed] [Google Scholar]
  10. Chapple M. R., MacLennan I. C., Johnson G. D. A phenotypic study of B lymphocyte subpopulations in human bone marrow. Clin Exp Immunol. 1990 Jul;81(1):166–172. doi: 10.1111/j.1365-2249.1990.tb05309.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cox J. P., Tomlinson I. M., Winter G. A directory of human germ-line V kappa segments reveals a strong bias in their usage. Eur J Immunol. 1994 Apr;24(4):827–836. doi: 10.1002/eji.1830240409. [DOI] [PubMed] [Google Scholar]
  12. Davi F., Maloum K., Michel A., Pritsch O., Magnac C., Macintyre E., Salomon-Nguyen F., Binet J. L., Dighiero G., Merle-Béral H. High frequency of somatic mutations in the VH genes expressed in prolymphocytic leukemia. Blood. 1996 Nov 15;88(10):3953–3961. [PubMed] [Google Scholar]
  13. Dono M., Zupo S., Masante R., Taborelli G., Chiorazzi N., Ferrarini M. Identification of two distinct CD5- B cell subsets from human tonsils with different responses to CD40 monoclonal antibody. Eur J Immunol. 1993 Apr;23(4):873–881. doi: 10.1002/eji.1830230416. [DOI] [PubMed] [Google Scholar]
  14. Ebeling S. B., Schutte M. E., Logtenberg T. Peripheral human CD5+ and CD5- B cells may express somatically mutated VH5- and VH6-encoded IgM receptors. J Immunol. 1993 Dec 15;151(12):6891–6899. [PubMed] [Google Scholar]
  15. Ebeling S. B., Schutte M. E., Logtenberg T. The majority of human tonsillar CD5+ B cells express somatically mutated V kappa 4 genes. Eur J Immunol. 1993 Jun;23(6):1405–1408. doi: 10.1002/eji.1830230636. [DOI] [PubMed] [Google Scholar]
  16. Efremov D. G., Ivanovski M., Siljanovski N., Pozzato G., Cevreska L., Fais F., Chiorazzi N., Batista F. D., Burrone O. R. Restricted immunoglobulin VH region repertoire in chronic lymphocytic leukemia patients with autoimmune hemolytic anemia. Blood. 1996 May 1;87(9):3869–3876. [PubMed] [Google Scholar]
  17. Feddersen R. M., Martin D. J., Van Ness B. G. The frequency of multiple recombination events occurring at the human Ig kappa L chain locus. J Immunol. 1990 Feb 1;144(3):1088–1093. [PubMed] [Google Scholar]
  18. Feeney A. J. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J Exp Med. 1990 Nov 1;172(5):1377–1390. doi: 10.1084/jem.172.5.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Förster I., Gu H., Rajewsky K. Germline antibody V regions as determinants of clonal persistence and malignant growth in the B cell compartment. EMBO J. 1988 Dec 1;7(12):3693–3703. doi: 10.1002/j.1460-2075.1988.tb03251.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gadol N., Ault K. A. Phenotypic and functional characterization of human Leu1 (CD5) B cells. Immunol Rev. 1986 Oct;93:23–34. doi: 10.1111/j.1600-065x.1986.tb01500.x. [DOI] [PubMed] [Google Scholar]
  21. Gadol N., Peacock M. A., Ault K. A. Antigenic phenotype and functional characterization of human tonsil B cells. Blood. 1988 Apr;71(4):1048–1055. [PubMed] [Google Scholar]
  22. Gay D., Saunders T., Camper S., Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med. 1993 Apr 1;177(4):999–1008. doi: 10.1084/jem.177.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Grey H. M., Mannik M. Specificity of recombination of H and L chains from human gamma-G-myeloma proteins. J Exp Med. 1965 Sep 1;122(3):619–632. doi: 10.1084/jem.122.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gu H., Förster I., Rajewsky K. Sequence homologies, N sequence insertion and JH gene utilization in VHDJH joining: implications for the joining mechanism and the ontogenetic timing of Ly1 B cell and B-CLL progenitor generation. EMBO J. 1990 Jul;9(7):2133–2140. doi: 10.1002/j.1460-2075.1990.tb07382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Harindranath N., Goldfarb I. S., Ikematsu H., Burastero S. E., Wilder R. L., Notkins A. L., Casali P. Complete sequence of the genes encoding the VH and VL regions of low- and high-affinity monoclonal IgM and IgA1 rheumatoid factors produced by CD5+ B cells from a rheumatoid arthritis patient. Int Immunol. 1991 Sep;3(9):865–875. doi: 10.1093/intimm/3.9.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hashimoto S., Dono M., Wakai M., Allen S. L., Lichtman S. M., Schulman P., Vinciguerra V. P., Ferrarini M., Silver J., Chiorazzi N. Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells. J Exp Med. 1995 Apr 1;181(4):1507–1517. doi: 10.1084/jem.181.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hayakawa K., Hardy R. R., Herzenberg L. A., Herzenberg L. A. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med. 1985 Jun 1;161(6):1554–1568. doi: 10.1084/jem.161.6.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hayakawa K., Hardy R. R., Parks D. R., Herzenberg L. A. The "Ly-1 B" cell subpopulation in normal immunodefective, and autoimmune mice. J Exp Med. 1983 Jan 1;157(1):202–218. doi: 10.1084/jem.157.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hayakawa K., Hardy R. R., Stall A. M., Herzenberg L. A., Herzenberg L. A. Immunoglobulin-bearing B cells reconstitute and maintain the murine Ly-1 B cell lineage. Eur J Immunol. 1986 Oct;16(10):1313–1316. doi: 10.1002/eji.1830161021. [DOI] [PubMed] [Google Scholar]
  30. Hieter P. A., Maizel J. V., Jr, Leder P. Evolution of human immunoglobulin kappa J region genes. J Biol Chem. 1982 Feb 10;257(3):1516–1522. [PubMed] [Google Scholar]
  31. Huber C., Klobeck H. G., Zachau H. G. Ongoing V kappa-J kappa recombination after formation of a productive V kappa-J kappa coding joint. Eur J Immunol. 1992 Jun;22(6):1561–1565. doi: 10.1002/eji.1830220632. [DOI] [PubMed] [Google Scholar]
  32. Irsch J., Irlenbusch S., Radl J., Burrows P. D., Cooper M. D., Radbruch A. H. Switch recombination in normal IgA1+ B lymphocytes. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1323–1327. doi: 10.1073/pnas.91.4.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Jacob J., Kelsoe G., Rajewsky K., Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991 Dec 5;354(6352):389–392. doi: 10.1038/354389a0. [DOI] [PubMed] [Google Scholar]
  34. Jelinek D. F., Splawski J. B., Lipsky P. E. Human peripheral blood B lymphocyte subpopulations: functional and phenotypic analysis of surface IgD positive and negative subsets. J Immunol. 1986 Jan;136(1):83–92. [PubMed] [Google Scholar]
  35. Johnson T. A., Rassenti L. Z., Kipps T. J. Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features. J Immunol. 1997 Jan 1;158(1):235–246. [PubMed] [Google Scholar]
  36. Kantor A. B., Merrill C. E., Herzenberg L. A., Hillson J. L. An unbiased analysis of V(H)-D-J(H) sequences from B-1a, B-1b, and conventional B cells. J Immunol. 1997 Feb 1;158(3):1175–1186. [PubMed] [Google Scholar]
  37. Kantor A. B., Stall A. M., Adams S., Watanabe K., Herzenberg L. A. De novo development and self-replenishment of B cells. Int Immunol. 1995 Jan;7(1):55–68. doi: 10.1093/intimm/7.1.55. [DOI] [PubMed] [Google Scholar]
  38. Kasaian M. T., Casali P. B-1 cellular origin and VH segment structure of IgG, IgA, and IgM anti-DNA autoantibodies in patients with systemic lupus erythematosus. Ann N Y Acad Sci. 1995 Sep 29;764:410–423. doi: 10.1111/j.1749-6632.1995.tb55856.x. [DOI] [PubMed] [Google Scholar]
  39. Kelsoe G. In situ studies of the germinal center reaction. Adv Immunol. 1995;60:267–288. doi: 10.1016/s0065-2776(08)60587-8. [DOI] [PubMed] [Google Scholar]
  40. Kipps T. J. The CD5 B cell. Adv Immunol. 1989;47:117–185. doi: 10.1016/s0065-2776(08)60663-x. [DOI] [PubMed] [Google Scholar]
  41. Kipps T. J., Tomhave E., Chen P. P., Carson D. A. Autoantibody-associated kappa light chain variable region gene expressed in chronic lymphocytic leukemia with little or no somatic mutation. Implications for etiology and immunotherapy. J Exp Med. 1988 Mar 1;167(3):840–852. doi: 10.1084/jem.167.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Kiyoi H., Naito K., Ohno R., Naoe T. Comparable profiles of the immunoglobulin heavy chain complementarity determining region (CDR)-3 in CD5+ and CD5- human cord blood B lymphocytes. Immunology. 1995 Jun;85(2):236–240. [PMC free article] [PubMed] [Google Scholar]
  43. Klein R., Jaenichen R., Zachau H. G. Expressed human immunoglobulin kappa genes and their hypermutation. Eur J Immunol. 1993 Dec;23(12):3248–3262. doi: 10.1002/eji.1830231231. [DOI] [PubMed] [Google Scholar]
  44. Klein U., Küppers R., Rajewsky K. Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood. 1997 Feb 15;89(4):1288–1298. [PubMed] [Google Scholar]
  45. Klein U., Küppers R., Rajewsky K. Human IgM+IgD+ B cells, the major B cell subset in the peripheral blood, express V kappa genes with no or little somatic mutation throughout life. Eur J Immunol. 1993 Dec;23(12):3272–3277. doi: 10.1002/eji.1830231232. [DOI] [PubMed] [Google Scholar]
  46. Klein U., Küppers R., Rajewsky K. Variable region gene analysis of B cell subsets derived from a 4-year-old child: somatically mutated memory B cells accumulate in the peripheral blood already at young age. J Exp Med. 1994 Oct 1;180(4):1383–1393. doi: 10.1084/jem.180.4.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Korganow A. S., Martin T., Weber J. C., Lioure B., Lutz P., Knapp A. M., Pasquali J. L. Molecular analysis of rearranged VH genes during B cell chronic lymphocytic leukemia: intraclonal stability is frequent but not constant. Leuk Lymphoma. 1994 Jun;14(1-2):55–69. doi: 10.3109/10428199409049651. [DOI] [PubMed] [Google Scholar]
  48. Küppers R., Gause A., Rajewsky K. B cells of chronic lymphatic leukemia express V genes in unmutated form. Leuk Res. 1991;15(6):487–496. doi: 10.1016/0145-2126(91)90060-7. [DOI] [PubMed] [Google Scholar]
  49. Küppers R., Hajadi M., Plank L., Rajewsky K., Hansmann M. L. Molecular Ig gene analysis reveals that monocytoid B cell lymphoma is a malignancy of mature B cells carrying somatically mutated V region genes and suggests that rearrangement of the kappa-deleting element (resulting in deletion of the Ig kappa enhancers) abolishes somatic hypermutation in the human. Eur J Immunol. 1996 Aug;26(8):1794–1800. doi: 10.1002/eji.1830260820. [DOI] [PubMed] [Google Scholar]
  50. Küppers R., Zhao M., Hansmann M. L., Rajewsky K. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J. 1993 Dec 15;12(13):4955–4967. doi: 10.1002/j.1460-2075.1993.tb06189.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Lee S. K., Bridges S. L., Jr, Koopman W. J., Schroeder H. W., Jr The immunoglobulin kappa light chain repertoire expressed in the synovium of a patient with rheumatoid arthritis. Arthritis Rheum. 1992 Aug;35(8):905–913. doi: 10.1002/art.1780350809. [DOI] [PubMed] [Google Scholar]
  52. Linton P. J., Lo D., Lai L., Thorbecke G. J., Klinman N. R. Among naive precursor cell subpopulations only progenitors of memory B cells originate germinal centers. Eur J Immunol. 1992 May;22(5):1293–1297. doi: 10.1002/eji.1830220526. [DOI] [PubMed] [Google Scholar]
  53. Mantovani L., Wilder R. L., Casali P. Human rheumatoid B-1a (CD5+ B) cells make somatically hypermutated high affinity IgM rheumatoid factors. J Immunol. 1993 Jul 1;151(1):473–488. [PMC free article] [PubMed] [Google Scholar]
  54. Nakamura M., Burastero S. E., Notkins A. L., Casal P. Human monoclonal rheumatoid factor-like antibodies from CD5 (Leu-1)+ B cells are polyreactive. J Immunol. 1988 Jun 15;140(12):4180–4186. [PubMed] [Google Scholar]
  55. Pascual V., Liu Y. J., Magalski A., de Bouteiller O., Banchereau J., Capra J. D. Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med. 1994 Jul 1;180(1):329–339. doi: 10.1084/jem.180.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Pennell C. A., Mercolino T. J., Grdina T. A., Arnold L. W., Haughton G., Clarke S. H. Biased immunoglobulin variable region gene expression by Ly-1 B cells due to clonal selection. Eur J Immunol. 1989 Jul;19(7):1289–1295. doi: 10.1002/eji.1830190721. [DOI] [PubMed] [Google Scholar]
  57. Pratt L. F., Rassenti L., Larrick J., Robbins B., Banks P. M., Kipps T. J. Ig V region gene expression in small lymphocytic lymphoma with little or no somatic hypermutation. J Immunol. 1989 Jul 15;143(2):699–705. [PubMed] [Google Scholar]
  58. Rajewsky K., Förster I., Cumano A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science. 1987 Nov 20;238(4830):1088–1094. doi: 10.1126/science.3317826. [DOI] [PubMed] [Google Scholar]
  59. Rassenti L. Z., Kipps T. J. Lack of extensive mutations in the VH5 genes used in common B cell chronic lymphocytic leukemia. J Exp Med. 1993 Apr 1;177(4):1039–1046. doi: 10.1084/jem.177.4.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sanz I., Casali P., Thomas J. W., Notkins A. L., Capra J. D. Nucleotide sequences of eight human natural autoantibody VH regions reveals apparent restricted use of VH families. J Immunol. 1989 Jun 1;142(11):4054–4061. [PubMed] [Google Scholar]
  61. Sanz I. Multiple mechanisms participate in the generation of diversity of human H chain CDR3 regions. J Immunol. 1991 Sep 1;147(5):1720–1729. [PubMed] [Google Scholar]
  62. Schroeder H. W., Jr, Dighiero G. The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. Immunol Today. 1994 Jun;15(6):288–294. doi: 10.1016/0167-5699(94)90009-4. [DOI] [PubMed] [Google Scholar]
  63. Schroeder H. W., Jr, Wang J. Y. Preferential utilization of conserved immunoglobulin heavy chain variable gene segments during human fetal life. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6146–6150. doi: 10.1073/pnas.87.16.6146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Schutte M. E., Ebeling S. B., Akkermans K. E., Gmelig-Meyling F. H., Logtenberg T. Antibody specificity and immunoglobulin VH gene utilization of human monoclonal CD5+ B cell lines. Eur J Immunol. 1991 May;21(5):1115–1121. doi: 10.1002/eji.1830210505. [DOI] [PubMed] [Google Scholar]
  65. Schäble K. F., Zachau H. G. The variable genes of the human immunoglobulin kappa locus. Biol Chem Hoppe Seyler. 1993 Nov;374(11):1001–1022. [PubMed] [Google Scholar]
  66. Stall A. M., Wells S. M., Lam K. P. B-1 cells: unique origins and functions. Semin Immunol. 1996 Feb;8(1):45–59. doi: 10.1006/smim.1996.0007. [DOI] [PubMed] [Google Scholar]
  67. Tarlinton D., Stall A. M., Herzenberg L. A. Repetitive usage of immunoglobulin VH and D gene segments in CD5+ Ly-1 B clones of (NZB x NZW)F1 mice. EMBO J. 1988 Dec 1;7(12):3705–3710. doi: 10.1002/j.1460-2075.1988.tb03253.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Wagner S. D., Luzzatto L. V kappa gene segments rearranged in chronic lymphocytic leukemia are distributed over a large portion of the V kappa locus and do not show somatic mutation. Eur J Immunol. 1993 Feb;23(2):391–397. doi: 10.1002/eji.1830230214. [DOI] [PubMed] [Google Scholar]
  69. Weber J. C., Blaison G., Martin T., Knapp A. M., Pasquali J. L. Evidence that the V kappa III gene usage is nonstochastic in both adult and newborn peripheral B cells and that peripheral CD5+ adult B cells are oligoclonal. J Clin Invest. 1994 May;93(5):2093–2105. doi: 10.1172/JCI117204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Wortis H. H., Teutsch M., Higer M., Zheng J., Parker D. C. B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B-cell phenotypes. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3348–3352. doi: 10.1073/pnas.92.8.3348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. van der Heijden R. W., Bunschoten H., Pascual V., Uytdehaag F. G., Osterhaus D. M., Capra J. D. Nucleotide sequence of a human monoclonal anti-idiotypic antibody specific for a rabies virus-neutralizing monoclonal idiotypic antibody reveals extensive somatic variability suggestive of an antigen-driven immune response. J Immunol. 1990 Apr 1;144(7):2835–2839. [PubMed] [Google Scholar]