Cellular and molecular mechanisms of endothelial cell dysfunction (original) (raw)

Full Text

The Full Text of this article is available as a PDF (111.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amit N., Huu T. P., Sourbier P., Marquetty C., Hakim J. Role of cytochrome b-559 in arachidonic acid activation of resting human neutrophils. Biochim Biophys Acta. 1988 Oct 20;944(3):437–443. doi: 10.1016/0005-2736(88)90514-7. [DOI] [PubMed] [Google Scholar]
  2. Arnal J. F., Münzel T., Venema R. C., James N. L., Bai C. L., Mitch W. E., Harrison D. G. Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J Clin Invest. 1995 Jun;95(6):2565–2572. doi: 10.1172/JCI117957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Awolesi M. A., Sessa W. C., Sumpio B. E. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest. 1995 Sep;96(3):1449–1454. doi: 10.1172/JCI118181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bogle R. G., Baydoun A. R., Pearson J. D., Mann G. E. Regulation of L-arginine transport and nitric oxide release in superfused porcine aortic endothelial cells. J Physiol. 1996 Jan 1;490(Pt 1):229–241. doi: 10.1113/jphysiol.1996.sp021138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonnardeaux A., Nadaud S., Charru A., Jeunemaitre X., Corvol P., Soubrier F. Lack of evidence for linkage of the endothelial cell nitric oxide synthase gene to essential hypertension. Circulation. 1995 Jan 1;91(1):96–102. doi: 10.1161/01.cir.91.1.96. [DOI] [PubMed] [Google Scholar]
  6. Bossaller C., Habib G. B., Yamamoto H., Williams C., Wells S., Henry P. D. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest. 1987 Jan;79(1):170–174. doi: 10.1172/JCI112779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buga G. M., Singh R., Pervin S., Rogers N. E., Schmitz D. A., Jenkinson C. P., Cederbaum S. D., Ignarro L. J. Arginase activity in endothelial cells: inhibition by NG-hydroxy-L-arginine during high-output NO production. Am J Physiol. 1996 Nov;271(5 Pt 2):H1988–H1998. doi: 10.1152/ajpheart.1996.271.5.H1988. [DOI] [PubMed] [Google Scholar]
  8. Böger R. H., Bode-Böger S. M., Thiele W., Junker W., Alexander K., Frölich J. C. Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation. 1997 Apr 15;95(8):2068–2074. doi: 10.1161/01.cir.95.8.2068. [DOI] [PubMed] [Google Scholar]
  9. Cendan J. C., Souba W. W., Copeland E. M., 3rd, Lind D. S. Cytokines regulate endotoxin stimulation of endothelial cell arginine transport. Surgery. 1995 Feb;117(2):213–219. doi: 10.1016/s0039-6060(05)80088-1. [DOI] [PubMed] [Google Scholar]
  10. Chen P. Y., Sanders P. W. Role of nitric oxide synthesis in salt-sensitive hypertension in Dahl/Rapp rats. Hypertension. 1993 Dec;22(6):812–818. doi: 10.1161/01.hyp.22.6.812. [DOI] [PubMed] [Google Scholar]
  11. Clark R. A., Leidal K. G., Pearson D. W., Nauseef W. M. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem. 1987 Mar 25;262(9):4065–4074. [PubMed] [Google Scholar]
  12. Cooke J. P., Andon N. A., Girerd X. J., Hirsch A. T., Creager M. A. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta. Circulation. 1991 Mar;83(3):1057–1062. doi: 10.1161/01.cir.83.3.1057. [DOI] [PubMed] [Google Scholar]
  13. Cooke J. P., Singer A. H., Tsao P., Zera P., Rowan R. A., Billingham M. E. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992 Sep;90(3):1168–1172. doi: 10.1172/JCI115937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Corson M. A., James N. L., Latta S. E., Nerem R. M., Berk B. C., Harrison D. G. Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res. 1996 Nov;79(5):984–991. doi: 10.1161/01.res.79.5.984. [DOI] [PubMed] [Google Scholar]
  15. Creager M. A., Gallagher S. J., Girerd X. J., Coleman S. M., Dzau V. J., Cooke J. P. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest. 1992 Oct;90(4):1248–1253. doi: 10.1172/JCI115987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Drexler H., Zeiher A. M., Meinzer K., Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet. 1991 Dec 21;338(8782-8783):1546–1550. doi: 10.1016/0140-6736(91)92372-9. [DOI] [PubMed] [Google Scholar]
  17. Durante W., Liao L., Cheng K., Schafer A. I. Selective induction of a cationic amino acid transporter by tumor necrosis factor-alpha in vascular endothelium. Proc Assoc Am Physicians. 1996 Sep;108(5):356–361. [PubMed] [Google Scholar]
  18. Fukui T., Ishizaka N., Rajagopalan S., Laursen J. B., Capers Q., 4th, Taylor W. R., Harrison D. G., de Leon H., Wilcox J. N., Griendling K. K. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res. 1997 Jan;80(1):45–51. doi: 10.1161/01.res.80.1.45. [DOI] [PubMed] [Google Scholar]
  19. Fukui T., Lassègue B., Kai H., Alexander R. W., Griendling K. K. Cytochrome b-558 alpha-subunit cloning and expression in rat aortic smooth muscle cells. Biochim Biophys Acta. 1995 Oct 10;1231(3):215–219. doi: 10.1016/0005-2728(95)00098-4. [DOI] [PubMed] [Google Scholar]
  20. Girerd X. J., Hirsch A. T., Cooke J. P., Dzau V. J., Creager M. A. L-arginine augments endothelium-dependent vasodilation in cholesterol-fed rabbits. Circ Res. 1990 Dec;67(6):1301–1308. doi: 10.1161/01.res.67.6.1301. [DOI] [PubMed] [Google Scholar]
  21. Giugliano D., Marfella R., Verrazzo G., Acampora R., Coppola L., Cozzolino D., D'Onofrio F. The vascular effects of L-Arginine in humans. The role of endogenous insulin. J Clin Invest. 1997 Feb 1;99(3):433–438. doi: 10.1172/JCI119177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Griendling K. K., Minieri C. A., Ollerenshaw J. D., Alexander R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994 Jun;74(6):1141–1148. doi: 10.1161/01.res.74.6.1141. [DOI] [PubMed] [Google Scholar]
  23. Harrison D. G. Endothelial control of vasomotion and nitric oxide production: a potential target for risk factor management. Cardiol Clin. 1996 Feb;14(1):1–15. doi: 10.1016/s0733-8651(05)70257-5. [DOI] [PubMed] [Google Scholar]
  24. Harrison D. G., Venema R. C., Arnal J. F., Inoue N., Ohara Y., Sayegh H., Murphy T. J. The endothelial cell nitric oxide synthase: is it really constitutively expressed? Agents Actions Suppl. 1995;45:107–117. doi: 10.1007/978-3-0348-7346-8_16. [DOI] [PubMed] [Google Scholar]
  25. Hecker M., Sessa W. C., Harris H. J., Anggård E. E., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8612–8616. doi: 10.1073/pnas.87.21.8612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Heitzer T., Just H., Münzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation. 1996 Jul 1;94(1):6–9. doi: 10.1161/01.cir.94.1.6. [DOI] [PubMed] [Google Scholar]
  27. Hirata K., Miki N., Kuroda Y., Sakoda T., Kawashima S., Yokoyama M. Low concentration of oxidized low-density lipoprotein and lysophosphatidylcholine upregulate constitutive nitric oxide synthase mRNA expression in bovine aortic endothelial cells. Circ Res. 1995 Jun;76(6):958–962. doi: 10.1161/01.res.76.6.958. [DOI] [PubMed] [Google Scholar]
  28. Kojima S., Ona S., Iizuka I., Arai T., Mori H., Kubota K. Antioxidative activity of 5,6,7,8-tetrahydrobiopterin and its inhibitory effect on paraquat-induced cell toxicity in cultured rat hepatocytes. Free Radic Res. 1995 Nov;23(5):419–430. doi: 10.3109/10715769509065263. [DOI] [PubMed] [Google Scholar]
  29. Laursen J. B., Rajagopalan S., Galis Z., Tarpey M., Freeman B. A., Harrison D. G. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation. 1997 Feb 4;95(3):588–593. doi: 10.1161/01.cir.95.3.588. [DOI] [PubMed] [Google Scholar]
  30. Liao J. K., Clark S. L. Regulation of G-protein alpha i2 subunit expression by oxidized low-density lipoprotein. J Clin Invest. 1995 Apr;95(4):1457–1463. doi: 10.1172/JCI117816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Michel T., Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest. 1997 Nov 1;100(9):2146–2152. doi: 10.1172/JCI119750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Minor R. L., Jr, Myers P. R., Guerra R., Jr, Bates J. N., Harrison D. G. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest. 1990 Dec;86(6):2109–2116. doi: 10.1172/JCI114949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mohazzab K. M., Kaminski P. M., Wolin M. S. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994 Jun;266(6 Pt 2):H2568–H2572. doi: 10.1152/ajpheart.1994.266.6.H2568. [DOI] [PubMed] [Google Scholar]
  34. Mohazzab K. M., Wolin M. S. Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor. Am J Physiol. 1994 Dec;267(6 Pt 1):L823–L831. doi: 10.1152/ajplung.1994.267.6.L823. [DOI] [PubMed] [Google Scholar]
  35. Mohazzab K. M., Wolin M. S. Sites of superoxide anion production detected by lucigenin in calf pulmonary artery smooth muscle. Am J Physiol. 1994 Dec;267(6 Pt 1):L815–L822. doi: 10.1152/ajplung.1994.267.6.L815. [DOI] [PubMed] [Google Scholar]
  36. Mügge A., Elwell J. H., Peterson T. E., Hofmeyer T. G., Heistad D. D., Harrison D. G. Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res. 1991 Nov;69(5):1293–1300. doi: 10.1161/01.res.69.5.1293. [DOI] [PubMed] [Google Scholar]
  37. Mügge A., Harrison D. G. L-arginine does not restore endothelial dysfunction in atherosclerotic rabbit aorta in vitro. Blood Vessels. 1991;28(5):354–357. doi: 10.1159/000158881. [DOI] [PubMed] [Google Scholar]
  38. Münzel T., Kurz S., Rajagopalan S., Thoenes M., Berrington W. R., Thompson J. A., Freeman B. A., Harrison D. G. Hydralazine prevents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase. A new action for an old drug. J Clin Invest. 1996 Sep 15;98(6):1465–1470. doi: 10.1172/JCI118935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Münzel T., Sayegh H., Freeman B. A., Tarpey M. M., Harrison D. G. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest. 1995 Jan;95(1):187–194. doi: 10.1172/JCI117637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nakayama T., Soma M., Takahashi Y., Izumi Y., Kanmatsuse K., Esumi M. Association analysis of CA repeat polymorphism of the endothelial nitric oxide synthase gene with essential hypertension in Japanese. Clin Genet. 1997 Jan;51(1):26–30. doi: 10.1111/j.1399-0004.1997.tb02409.x. [DOI] [PubMed] [Google Scholar]
  41. Nishida K., Harrison D. G., Navas J. P., Fisher A. A., Dockery S. P., Uematsu M., Nerem R. M., Alexander R. W., Murphy T. J. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992 Nov;90(5):2092–2096. doi: 10.1172/JCI116092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pagano P. J., Ito Y., Tornheim K., Gallop P. M., Tauber A. I., Cohen R. A. An NADPH oxidase superoxide-generating system in the rabbit aorta. Am J Physiol. 1995 Jun;268(6 Pt 2):H2274–H2280. doi: 10.1152/ajpheart.1995.268.6.H2274. [DOI] [PubMed] [Google Scholar]
  43. Pieper G. M. Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J Cardiovasc Pharmacol. 1997 Jan;29(1):8–15. doi: 10.1097/00005344-199701000-00002. [DOI] [PubMed] [Google Scholar]
  44. Pieper G. M., Peltier B. A. Amelioration by L-arginine of a dysfunctional arginine/nitric oxide pathway in diabetic endothelium. J Cardiovasc Pharmacol. 1995 Mar;25(3):397–403. doi: 10.1097/00005344-199503000-00008. [DOI] [PubMed] [Google Scholar]
  45. Pou S., Pou W. S., Bredt D. S., Snyder S. H., Rosen G. M. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992 Dec 5;267(34):24173–24176. [PubMed] [Google Scholar]
  46. Rajagopalan S., Kurz S., Münzel T., Tarpey M., Freeman B. A., Griendling K. K., Harrison D. G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996 Apr 15;97(8):1916–1923. doi: 10.1172/JCI118623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ravichandran L. V., Johns R. A. Up-regulation of endothelial nitric oxide synthase expression by cyclic guanosine 3',5'-monophosphate. FEBS Lett. 1995 Oct 30;374(2):295–298. doi: 10.1016/0014-5793(95)01134-z. [DOI] [PubMed] [Google Scholar]
  48. Sessa W. C., Pritchard K., Seyedi N., Wang J., Hintze T. H. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994 Feb;74(2):349–353. doi: 10.1161/01.res.74.2.349. [DOI] [PubMed] [Google Scholar]
  49. Shimokawa H., Flavahan N. A., Vanhoutte P. M. Loss of endothelial pertussis toxin-sensitive G protein function in atherosclerotic porcine coronary arteries. Circulation. 1991 Feb;83(2):652–660. doi: 10.1161/01.cir.83.2.652. [DOI] [PubMed] [Google Scholar]
  50. Sobrevia L., Nadal A., Yudilevich D. L., Mann G. E. Activation of L-arginine transport (system y+) and nitric oxide synthase by elevated glucose and insulin in human endothelial cells. J Physiol. 1996 Feb 1;490(Pt 3):775–781. doi: 10.1113/jphysiol.1996.sp021185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Solzbach U., Hornig B., Jeserich M., Just H. Vitamin C improves endothelial dysfunction of epicardial coronary arteries in hypertensive patients. Circulation. 1997 Sep 2;96(5):1513–1519. doi: 10.1161/01.cir.96.5.1513. [DOI] [PubMed] [Google Scholar]
  52. Stroes E., Kastelein J., Cosentino F., Erkelens W., Wever R., Koomans H., Lüscher T., Rabelink T. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest. 1997 Jan 1;99(1):41–46. doi: 10.1172/JCI119131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Thomson L., Trujillo M., Telleri R., Radi R. Kinetics of cytochrome c2+ oxidation by peroxynitrite: implications for superoxide measurements in nitric oxide-producing biological systems. Arch Biochem Biophys. 1995 Jun 1;319(2):491–497. doi: 10.1006/abbi.1995.1321. [DOI] [PubMed] [Google Scholar]
  54. Tsutsui M., Shimokawa H., Tanaka S., Kuwaoka I., Hase K., Nogami N., Nakanishi K., Okamatsu S. Endothelial Gi protein in human coronary arteries. Eur Heart J. 1994 Sep;15(9):1261–1266. doi: 10.1093/oxfordjournals.eurheartj.a060662. [DOI] [PubMed] [Google Scholar]
  55. Ushio-Fukai M., Zafari A. M., Fukui T., Ishizaka N., Griendling K. K. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem. 1996 Sep 20;271(38):23317–23321. doi: 10.1074/jbc.271.38.23317. [DOI] [PubMed] [Google Scholar]
  56. Vallance P., Leone A., Calver A., Collier J., Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992 Mar 7;339(8793):572–575. doi: 10.1016/0140-6736(92)90865-z. [DOI] [PubMed] [Google Scholar]
  57. Venema R. C., Sayegh H. S., Arnal J. F., Harrison D. G. Role of the enzyme calmodulin-binding domain in membrane association and phospholipid inhibition of endothelial nitric oxide synthase. J Biol Chem. 1995 Jun 16;270(24):14705–14711. doi: 10.1074/jbc.270.24.14705. [DOI] [PubMed] [Google Scholar]
  58. Venema R. C., Sayegh H. S., Kent J. D., Harrison D. G. Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthases. J Biol Chem. 1996 Mar 15;271(11):6435–6440. doi: 10.1074/jbc.271.11.6435. [DOI] [PubMed] [Google Scholar]
  59. White C. R., Brock T. A., Chang L. Y., Crapo J., Briscoe P., Ku D., Bradley W. A., Gianturco S. H., Gore J., Freeman B. A. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1044–1048. doi: 10.1073/pnas.91.3.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Zembowicz A., Tang J. L., Wu K. K. Transcriptional induction of endothelial nitric oxide synthase type III by lysophosphatidylcholine. J Biol Chem. 1995 Jul 14;270(28):17006–17010. doi: 10.1074/jbc.270.28.17006. [DOI] [PubMed] [Google Scholar]