Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans (original) (raw)

Abstract

13C NMR spectroscopy was used to assess flux rates of hepatic glycogen synthase and phosphorylase in overnight-fasted subjects under one of four hypoglucagonemic conditions: protocol I, hyperglycemic (approximately 10 mM) -hypoinsulinemia (approximately 40 pM); protocol II, euglycemic (approximately 5 mM) -hyperinsulinemia (approximately 400 pM); protocol III, hyperglycemic (approximately 10 mM) -hyperinsulinemia (approximately 400 pM); and protocol IV; euglycemic (approximately 5 mM) -hypoinsulinemia (approximately 40 pM). Inhibition of net hepatic glycogenolysis occurred in both protocols I and II compared to protocol IV but via a different mechanism. Inhibition of net hepatic glycogenolysis occurred in protocol I mostly due to decreased glycogen phosphorylase flux, whereas in protocol II inhibition of net hepatic glycogenolysis occurred exclusively through the activation of glycogen synthase flux. Phosphorylase flux was unaltered, resulting in extensive glycogen cycling. Relatively high rates of net hepatic glycogen synthesis were observed in protocol III due to combined stimulation of glycogen synthase flux and inhibition of glycogen phosphorylase flux. In conclusion, under hypoglucagonemic conditions: (a) hyperglycemia, per se, inhibits net hepatic glycogenolysis primarily through inhibition of glycogen phosphorylase flux; (b) hyperinsulinemia, per se, inhibits net hepatic glycogenolysis primarily through stimulation of glycogen synthase flux; (c) inhibition of glycogen phosphorylase and the activation of glycogen synthase are not necessarily coupled and coordinated in a reciprocal fashion; and (d) promotion of hepatic glycogen cycling may be the principal mechanism by which insulin inhibits net hepatic glycogenolysis and endogenous glucose production in humans under euglycemic conditions.

Full Text

The Full Text of this article is available as a PDF (171.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assimacopoulos-Jeannet F., Jeanrenaud B. Insulin activates 6-phosphofructo-2-kinase and pyruvate kinase in the liver. Indirect evidence for an action via a phosphatase. J Biol Chem. 1990 May 5;265(13):7202–7206. doi: 10.1016/0261-5614(90)90109-6. [DOI] [PubMed] [Google Scholar]
  2. BISHOP J. S., STEELE R., ALTSZULER N., DUNN A., BJERKNES C., DEBODO R. C. EFFECTS OF INSULIN ON LIVER GLYCOGEN SYNTHESIS AND BREAKDOWN IN THE DOG. Am J Physiol. 1965 Feb;208:307–316. doi: 10.1152/ajplegacy.1965.208.2.307. [DOI] [PubMed] [Google Scholar]
  3. Bell P. M., Firth R. G., Rizza R. A. Effects of hyperglycemia on glucose production and utilization in humans. Measurement with [23H]-, [33H]-, and [614C]glucose. Diabetes. 1986 Jun;35(6):642–648. doi: 10.2337/diab.35.6.642. [DOI] [PubMed] [Google Scholar]
  4. Bergman R. N., Bucolo R. J. Interaction of insulin and glucose in the control of hepatic glucose balance. Am J Physiol. 1974 Dec;227(6):1314–1322. doi: 10.1152/ajplegacy.1974.227.6.1314. [DOI] [PubMed] [Google Scholar]
  5. Buschiazzo H., Exton J. H., Park C. R. Effects of glucose on glycogen synthetase, phosphorylase, and glycogen deposition in the perfused rat liver. Proc Natl Acad Sci U S A. 1970 Feb;65(2):383–387. doi: 10.1073/pnas.65.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cherrington A. D., Chiasson J. L., Liljenquist J. E., Jennings A. S., Keller U., Lacy W. W. The role of insulin and glucagon in the regulation of basal glucose production in the postabsorptive dog. J Clin Invest. 1976 Dec;58(6):1407–1418. doi: 10.1172/JCI108596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cherrington A. D., Chiasson J. L., Liljenquist J. E., Lacy W. W., Park C. R. Control of hepatic glucose output by glucagon and insulin in the intact dog. Biochem Soc Symp. 1978;(43):31–45. [PubMed] [Google Scholar]
  8. Cherrington A. D., Stevenson R. W., Steiner K. E., Davis M. A., Myers S. R., Adkins B. A., Abumrad N. N., Williams P. E. Insulin, glucagon, and glucose as regulators of hepatic glucose uptake and production in vivo. Diabetes Metab Rev. 1987 Jan;3(1):307–332. doi: 10.1002/dmr.5610030114. [DOI] [PubMed] [Google Scholar]
  9. Cline G. W., Rothman D. L., Magnusson I., Katz L. D., Shulman G. I. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J Clin Invest. 1994 Dec;94(6):2369–2376. doi: 10.1172/JCI117602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Curnow R. T., Rayfield E. J., George D. T., Zenser T. V., De Rubertis F. Control of hepatic glycogen metabolism in the rhesus monkey: effect of glucose, insulin, and glucagon administration. Am J Physiol. 1975 Jan;228(1):80–87. doi: 10.1152/ajplegacy.1975.228.1.80. [DOI] [PubMed] [Google Scholar]
  11. DeFronzo R. A., Ferrannini E., Hendler R., Wahren J., Felig P. Influence of hyperinsulinemia, hyperglycemia, and the route of glucose administration on splanchnic glucose exchange. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5173–5177. doi: 10.1073/pnas.75.10.5173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DeFronzo R. A., Ferrannini E. Regulation of hepatic glucose metabolism in humans. Diabetes Metab Rev. 1987 Apr;3(2):415–459. doi: 10.1002/dmr.5610030204. [DOI] [PubMed] [Google Scholar]
  13. Diamond M. P., Simonson D. C., DeFronzo R. A. Menstrual cyclicity has a profound effect on glucose homeostasis. Fertil Steril. 1989 Aug;52(2):204–208. [PubMed] [Google Scholar]
  14. Finegood D. T., Bergman R. N., Vranic M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates. Diabetes. 1987 Aug;36(8):914–924. doi: 10.2337/diab.36.8.914. [DOI] [PubMed] [Google Scholar]
  15. Finegood D. T., Bergman R. N., Vranic M. Modeling error and apparent isotope discrimination confound estimation of endogenous glucose production during euglycemic glucose clamps. Diabetes. 1988 Aug;37(8):1025–1034. doi: 10.2337/diab.37.8.1025. [DOI] [PubMed] [Google Scholar]
  16. Glinsmann W., Pauk G., Hern E. Control of rat liver glycogen synthetase and phosphorylase activities by glucose. Biochem Biophys Res Commun. 1970 May 22;39(4):774–782. doi: 10.1016/0006-291x(70)90272-x. [DOI] [PubMed] [Google Scholar]
  17. Halimi S., Assimacopoulos-Jeannet F., Terrettaz J., Jeanrenaud B. Differential effect of steady-state hyperinsulinaemia and hyperglycaemia on hepatic glycogenolysis and glycolysis in rats. Diabetologia. 1987 Apr;30(4):268–272. doi: 10.1007/BF00270426. [DOI] [PubMed] [Google Scholar]
  18. Hellerstein M. K., Neese R. A., Linfoot P., Christiansen M., Turner S., Letscher A. Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study. J Clin Invest. 1997 Sep 1;100(5):1305–1319. doi: 10.1172/JCI119644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hems D. A., Whitton P. D. Control of hepatic glycogenolysis. Physiol Rev. 1980 Jan;60(1):1–50. doi: 10.1152/physrev.1980.60.1.1. [DOI] [PubMed] [Google Scholar]
  20. Hers H. G., De Wulf H., Stalmans W., van den Berghe G. The control of glycogen synthesis in the liver. Adv Enzyme Regul. 1970;8:171–190. doi: 10.1016/0065-2571(70)90016-6. [DOI] [PubMed] [Google Scholar]
  21. Hers H. G. The control of glycogen metabolism in the liver. Annu Rev Biochem. 1976;45:167–189. doi: 10.1146/annurev.bi.45.070176.001123. [DOI] [PubMed] [Google Scholar]
  22. Hue L., Bontemps F., Hers H. The effects of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J. 1975 Oct;152(1):105–114. doi: 10.1042/bj1520105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liljenquist J. E., Mueller G. L., Cherrington A. D., Keller U., Chiasson J-L, Perry J. M., Lacy W. W., Rabinowitz D. Evidence for an important role of glucagon in the regulation of hepatic glucose production in normal man. J Clin Invest. 1977 Feb;59(2):369–374. doi: 10.1172/JCI108649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liljenquist J. E., Mueller G. L., Cherrington A. D., Perry J. M., Rabinowitz D. Hyperglycemia per se (insulin and glucagon withdrawn) can inhibit hepatic glucose production in man. J Clin Endocrinol Metab. 1979 Jan;48(1):171–175. doi: 10.1210/jcem-48-1-171. [DOI] [PubMed] [Google Scholar]
  25. Liu Z., Gardner L. B., Barrett E. J. Insulin and glucose suppress hepatic glycogenolysis by distinct enzymatic mechanisms. Metabolism. 1993 Dec;42(12):1546–1551. doi: 10.1016/0026-0495(93)90149-i. [DOI] [PubMed] [Google Scholar]
  26. Magnusson I., Chandramouli V., Schumann W. C., Kumaran K., Wahren J., Landau B. R. Quantitation of the pathways of hepatic glycogen formation on ingesting a glucose load. J Clin Invest. 1987 Dec;80(6):1748–1754. doi: 10.1172/JCI113267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Magnusson I., Rothman D. L., Jucker B., Cline G. W., Shulman R. G., Shulman G. I. Liver glycogen turnover in fed and fasted humans. Am J Physiol. 1994 May;266(5 Pt 1):E796–E803. doi: 10.1152/ajpendo.1994.266.5.E796. [DOI] [PubMed] [Google Scholar]
  28. Miles J., Glasscock R., Aikens J., Gerich J., Haymond M. A microfluorometric method for the determination of free fatty acids in plasma. J Lipid Res. 1983 Jan;24(1):96–99. [PubMed] [Google Scholar]
  29. Pagliassotti M. J., Holste L. C., Moore M. C., Neal D. W., Cherrington A. D. Comparison of the time courses of insulin and the portal signal on hepatic glucose and glycogen metabolism in the conscious dog. J Clin Invest. 1996 Jan 1;97(1):81–91. doi: 10.1172/JCI118410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Petersen K. F., Price T., Cline G. W., Rothman D. L., Shulman G. I. Contribution of net hepatic glycogenolysis to glucose production during the early postprandial period. Am J Physiol. 1996 Jan;270(1 Pt 1):E186–E191. doi: 10.1152/ajpendo.1996.270.1.E186. [DOI] [PubMed] [Google Scholar]
  31. Rizza R. A., Mandarino L. J., Gerich J. E. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol. 1981 Jun;240(6):E630–E639. doi: 10.1152/ajpendo.1981.240.6.E630. [DOI] [PubMed] [Google Scholar]
  32. Roden M., Perseghin G., Petersen K. F., Hwang J. H., Cline G. W., Gerow K., Rothman D. L., Shulman G. I. The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. J Clin Invest. 1996 Feb 1;97(3):642–648. doi: 10.1172/JCI118460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rothman D. L., Magnusson I., Katz L. D., Shulman R. G., Shulman G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991 Oct 25;254(5031):573–576. doi: 10.1126/science.1948033. [DOI] [PubMed] [Google Scholar]
  34. Schwenk W. F., Butler P. C., Haymond M. W., Rizza R. A. Underestimation of glucose turnover corrected with high-performance liquid chromatography purification of [6-3H]glucose. Am J Physiol. 1990 Jan;258(1 Pt 1):E228–E233. doi: 10.1152/ajpendo.1990.258.1.E228. [DOI] [PubMed] [Google Scholar]
  35. Seglen P. O. Effects of anaerobiosis, glucose, insulin and glucagon on glycogen metabolism in isolated parenchymal rat liver cells. FEBS Lett. 1973 Nov 1;36(3):309–312. doi: 10.1016/0014-5793(73)80398-9. [DOI] [PubMed] [Google Scholar]
  36. Shulman G. I., Cline G., Schumann W. C., Chandramouli V., Kumaran K., Landau B. R. Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans. Am J Physiol. 1990 Sep;259(3 Pt 1):E335–E341. doi: 10.1152/ajpendo.1990.259.3.E335. [DOI] [PubMed] [Google Scholar]
  37. Shulman G. I., Landau B. R. Pathways of glycogen repletion. Physiol Rev. 1992 Oct;72(4):1019–1035. doi: 10.1152/physrev.1992.72.4.1019. [DOI] [PubMed] [Google Scholar]
  38. Shulman G. I., Liljenquist J. E., Williams P. E., Lacy W. W., Cherrington A. D. Glucose disposal during insulinopenia in somatostatin-treated dogs. The roles of glucose and glucagon. J Clin Invest. 1978 Aug;62(2):487–491. doi: 10.1172/JCI109150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stalmans W., De Wulf H., Hue L., Hers H. G. The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem. 1974 Jan 3;41(1):127–134. doi: 10.1111/j.1432-1033.1974.tb03252.x. [DOI] [PubMed] [Google Scholar]
  40. Stalmans W., De Wulf H., Hue L., Hers H. G. The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem. 1974 Jan 3;41(1):127–134. doi: 10.1111/j.1432-1033.1974.tb03252.x. [DOI] [PubMed] [Google Scholar]
  41. Terrettaz J., Assimacopoulos-Jeannet F., Jeanrenaud B. Inhibition of hepatic glucose production by insulin in vivo in rats: contribution of glycolysis. Am J Physiol. 1986 Apr;250(4 Pt 1):E346–E351. doi: 10.1152/ajpendo.1986.250.4.E346. [DOI] [PubMed] [Google Scholar]
  42. Witters L. A., Avruch J. Insulin regulation of hepatic glycogen synthase and phosphorylase. Biochemistry. 1978 Feb 7;17(3):406–410. doi: 10.1021/bi00596a004. [DOI] [PubMed] [Google Scholar]
  43. van de Werve G., Hue L., Hers H. G. Hormonal and ionic control of the glycogenolytic cascade in rat liver. Biochem J. 1977 Jan 15;162(1):135–142. doi: 10.1042/bj1620135. [DOI] [PMC free article] [PubMed] [Google Scholar]