Various mechanisms cause RET-mediated signaling defects in Hirschsprung's disease (original) (raw)

Abstract

Hirschsprung's disease (HSCR) is a common congenital malformation characterized by the absence of intramural ganglion cells of the hindgut. Recently, mutations of the RET tyrosine kinase receptor have been identified in 50 and 15-20% of familial and sporadic HSCR, respectively. These mutations include deletion, insertion, frameshift, nonsense, and missense mutations dispersed throughout the RET coding sequence. To investigate their effects on RET function, seven HSCR missense mutations were introduced into either a 1114-amino acid wild-type RET isoform (RET51) or a constitutively activated form of RET51 (RET-MEN 2A). Here, we report that one mutation affecting the extracytoplasmic cadherin domain (R231H) and two mutations located in the tyrosine kinase domain (K907E, E921K) impaired the biological activity of RET-MEN 2A when tested in Rat1 fibroblasts and pheochromocytoma PC12 cells. However, the mechanisms resulting in RET inactivation differed since the receptor bearing R231H extracellular mutation resulted in an absent RET protein at the cell surface while the E921K mutation located within the catalytic domain abolished its enzymatic activity. In contrast, three mutations mapping into the intracytoplasmic domain neither modified the transforming capacity of RET-MEN 2A nor stimulated the catalytic activity of RET in our ligand-independent system (S767R, P1039L, M1064T). Finally, the C609W HSCR mutation exerts a dual effect on RET since it leads to a decrease of the receptor at the cell surface and converted RET51 into a constitutively activated kinase due to the formation of disulfide-linked homodimers. Taken together, our data show that allelic heterogeneity at the RET locus in HSCR is associated with various molecular mechanisms responsible for RET dysfunction.

Full Text

The Full Text of this article is available as a PDF (546.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angrist M., Bolk S., Halushka M., Lapchak P. A., Chakravarti A. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet. 1996 Nov;14(3):341–344. doi: 10.1038/ng1196-341. [DOI] [PubMed] [Google Scholar]
  2. Angrist M., Bolk S., Thiel B., Puffenberger E. G., Hofstra R. M., Buys C. H., Cass D. T., Chakravarti A. Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung disease. Hum Mol Genet. 1995 May;4(5):821–830. doi: 10.1093/hmg/4.5.821. [DOI] [PubMed] [Google Scholar]
  3. Angrist M., Kauffman E., Slaugenhaupt S. A., Matise T. C., Puffenberger E. G., Washington S. S., Lipson A., Cass D. T., Reyna T., Weeks D. E. A gene for Hirschsprung disease (megacolon) in the pericentromeric region of human chromosome 10. Nat Genet. 1993 Aug;4(4):351–356. doi: 10.1038/ng0893-351. [DOI] [PubMed] [Google Scholar]
  4. Arighi E., Alberti L., Torriti F., Ghizzoni S., Rizzetti M. G., Pelicci G., Pasini B., Bongarzone I., Piutti C., Pierotti M. A. Identification of Shc docking site on Ret tyrosine kinase. Oncogene. 1997 Feb 20;14(7):773–782. doi: 10.1038/sj.onc.1200896. [DOI] [PubMed] [Google Scholar]
  5. Asai N., Iwashita T., Matsuyama M., Takahashi M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol. 1995 Mar;15(3):1613–1619. doi: 10.1128/mcb.15.3.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Asai N., Murakami H., Iwashita T., Takahashi M. A mutation at tyrosine 1062 in MEN2A-Ret and MEN2B-Ret impairs their transforming activity and association with shc adaptor proteins. J Biol Chem. 1996 Jul 26;271(30):17644–17649. doi: 10.1074/jbc.271.30.17644. [DOI] [PubMed] [Google Scholar]
  7. Attié T., Till M., Pelet A., Amiel J., Edery P., Boutrand L., Munnich A., Lyonnet S. Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease. Hum Mol Genet. 1995 Dec;4(12):2407–2409. doi: 10.1093/hmg/4.12.2407. [DOI] [PubMed] [Google Scholar]
  8. Badner J. A., Sieber W. K., Garver K. L., Chakravarti A. A genetic study of Hirschsprung disease. Am J Hum Genet. 1990 Mar;46(3):568–580. [PMC free article] [PubMed] [Google Scholar]
  9. Baloh R. H., Tansey M. G., Golden J. P., Creedon D. J., Heuckeroth R. O., Keck C. L., Zimonjic D. B., Popescu N. C., Johnson E. M., Jr, Milbrandt J. TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron. 1997 May;18(5):793–802. doi: 10.1016/s0896-6273(00)80318-9. [DOI] [PubMed] [Google Scholar]
  10. Bonfini L., Migliaccio E., Pelicci G., Lanfrancone L., Pelicci P. G. Not all Shc's roads lead to Ras. Trends Biochem Sci. 1996 Jul;21(7):257–261. [PubMed] [Google Scholar]
  11. Borrello M. G., Smith D. P., Pasini B., Bongarzone I., Greco A., Lorenzo M. J., Arighi E., Miranda C., Eng C., Alberti L. RET activation by germline MEN2A and MEN2B mutations. Oncogene. 1995 Dec 7;11(11):2419–2427. [PubMed] [Google Scholar]
  12. Carlomagno F., De Vita G., Berlingieri M. T., de Franciscis V., Melillo R. M., Colantuoni V., Kraus M. H., Di Fiore P. P., Fusco A., Santoro M. Molecular heterogeneity of RET loss of function in Hirschsprung's disease. EMBO J. 1996 Jun 3;15(11):2717–2725. [PMC free article] [PubMed] [Google Scholar]
  13. Carlomagno F., Salvatore G., Cirafici A. M., De Vita G., Melillo R. M., de Franciscis V., Billaud M., Fusco A., Santoro M. The different RET-activating capability of mutations of cysteine 620 or cysteine 634 correlates with the multiple endocrine neoplasia type 2 disease phenotype. Cancer Res. 1997 Feb 1;57(3):391–395. [PubMed] [Google Scholar]
  14. D'Arcangelo G., Halegoua S. A branched signaling pathway for nerve growth factor is revealed by Src-, Ras-, and Raf-mediated gene inductions. Mol Cell Biol. 1993 Jun;13(6):3146–3155. doi: 10.1128/mcb.13.6.3146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Durbec P., Marcos-Gutierrez C. V., Kilkenny C., Grigoriou M., Wartiowaara K., Suvanto P., Smith D., Ponder B., Costantini F., Saarma M. GDNF signalling through the Ret receptor tyrosine kinase. Nature. 1996 Jun 27;381(6585):789–793. doi: 10.1038/381789a0. [DOI] [PubMed] [Google Scholar]
  16. Durick K., Wu R. Y., Gill G. N., Taylor S. S. Mitogenic signaling by Ret/ptc2 requires association with enigma via a LIM domain. J Biol Chem. 1996 May 31;271(22):12691–12694. doi: 10.1074/jbc.271.22.12691. [DOI] [PubMed] [Google Scholar]
  17. Eng C., Clayton D., Schuffenecker I., Lenoir G., Cote G., Gagel R. F., van Amstel H. K., Lips C. J., Nishisho I., Takai S. I. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996 Nov 20;276(19):1575–1579. [PubMed] [Google Scholar]
  18. Goodfellow P. J. Inherited cancers associated with the RET proto-oncogene. Curr Opin Genet Dev. 1994 Jun;4(3):446–452. doi: 10.1016/0959-437x(94)90034-5. [DOI] [PubMed] [Google Scholar]
  19. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  20. Ito S., Iwashita T., Asai N., Murakami H., Iwata Y., Sobue G., Takahashi M. Biological properties of Ret with cysteine mutations correlate with multiple endocrine neoplasia type 2A, familial medullary thyroid carcinoma, and Hirschsprung's disease phenotype. Cancer Res. 1997 Jul 15;57(14):2870–2872. [PubMed] [Google Scholar]
  21. Ivanchuk S. M., Myers S. M., Eng C., Mulligan L. M. De novo mutation of GDNF, ligand for the RET/GDNFR-alpha receptor complex, in Hirschsprung disease. Hum Mol Genet. 1996 Dec;5(12):2023–2026. doi: 10.1093/hmg/5.12.2023. [DOI] [PubMed] [Google Scholar]
  22. Iwashita T., Asai N., Murakami H., Matsuyama M., Takahashi M. Identification of tyrosine residues that are essential for transforming activity of the ret proto-oncogene with MEN2A or MEN2B mutation. Oncogene. 1996 Feb 1;12(3):481–487. [PubMed] [Google Scholar]
  23. Iwashita T., Murakami H., Asai N., Takahashi M. Mechanism of ret dysfunction by Hirschsprung mutations affecting its extracellular domain. Hum Mol Genet. 1996 Oct;5(10):1577–1580. doi: 10.1093/hmg/5.10.1577. [DOI] [PubMed] [Google Scholar]
  24. Jing S., Wen D., Yu Y., Holst P. L., Luo Y., Fang M., Tamir R., Antonio L., Hu Z., Cupples R. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell. 1996 Jun 28;85(7):1113–1124. doi: 10.1016/s0092-8674(00)81311-2. [DOI] [PubMed] [Google Scholar]
  25. Kotzbauer P. T., Lampe P. A., Heuckeroth R. O., Golden J. P., Creedon D. J., Johnson E. M., Jr, Milbrandt J. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature. 1996 Dec 5;384(6608):467–470. doi: 10.1038/384467a0. [DOI] [PubMed] [Google Scholar]
  26. Lorenzo M. J., Gish G. D., Houghton C., Stonehouse T. J., Pawson T., Ponder B. A., Smith D. P. RET alternate splicing influences the interaction of activated RET with the SH2 and PTB domains of Shc, and the SH2 domain of Grb2. Oncogene. 1997 Feb 20;14(7):763–771. doi: 10.1038/sj.onc.1200894. [DOI] [PubMed] [Google Scholar]
  27. Lyonnet S., Bolino A., Pelet A., Abel L., Nihoul-Fékété C., Briard M. L., Mok-Siu V., Kaariainen H., Martucciello G., Lerone M. A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nat Genet. 1993 Aug;4(4):346–350. doi: 10.1038/ng0893-346. [DOI] [PubMed] [Google Scholar]
  28. Morgenstern J. P., Land H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990 Jun 25;18(12):3587–3596. doi: 10.1093/nar/18.12.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mulligan L. M., Eng C., Attié T., Lyonnet S., Marsh D. J., Hyland V. J., Robinson B. G., Frilling A., Verellen-Dumoulin C., Safar A. Diverse phenotypes associated with exon 10 mutations of the RET proto-oncogene. Hum Mol Genet. 1994 Dec;3(12):2163–2167. doi: 10.1093/hmg/3.12.2163. [DOI] [PubMed] [Google Scholar]
  30. Mulligan L. M., Ponder B. A. Genetic basis of endocrine disease: multiple endocrine neoplasia type 2. J Clin Endocrinol Metab. 1995 Jul;80(7):1989–1995. doi: 10.1210/jcem.80.7.7608246. [DOI] [PubMed] [Google Scholar]
  31. Nagar B., Overduin M., Ikura M., Rini J. M. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature. 1996 Mar 28;380(6572):360–364. doi: 10.1038/380360a0. [DOI] [PubMed] [Google Scholar]
  32. Pandey A., Duan H., Di Fiore P. P., Dixit V. M. The Ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grb10. J Biol Chem. 1995 Sep 15;270(37):21461–21463. doi: 10.1074/jbc.270.37.21461. [DOI] [PubMed] [Google Scholar]
  33. Pandey A., Liu X., Dixon J. E., Di Fiore P. P., Dixit V. M. Direct association between the Ret receptor tyrosine kinase and the Src homology 2-containing adapter protein Grb7. J Biol Chem. 1996 May 3;271(18):10607–10610. doi: 10.1074/jbc.271.18.10607. [DOI] [PubMed] [Google Scholar]
  34. Pasini B., Borrello M. G., Greco A., Bongarzone I., Luo Y., Mondellini P., Alberti L., Miranda C., Arighi E., Bocciardi R. Loss of function effect of RET mutations causing Hirschsprung disease. Nat Genet. 1995 May;10(1):35–40. doi: 10.1038/ng0595-35. [DOI] [PubMed] [Google Scholar]
  35. Pasini B., Ceccherini I., Romeo G. RET mutations in human disease. Trends Genet. 1996 Apr;12(4):138–144. doi: 10.1016/0168-9525(96)10012-3. [DOI] [PubMed] [Google Scholar]
  36. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392–8396. doi: 10.1073/pnas.90.18.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Romeo G., Ronchetto P., Luo Y., Barone V., Seri M., Ceccherini I., Pasini B., Bocciardi R., Lerone M., Käriäinen H. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994 Jan 27;367(6461):377–378. doi: 10.1038/367377a0. [DOI] [PubMed] [Google Scholar]
  38. Rossel M., Pasini A., Chappuis S., Geneste O., Fournier L., Schuffenecker I., Takahashi M., van Grunsven L. A., Urdiales J. L., Rudkin B. B. Distinct biological properties of two RET isoforms activated by MEN 2A and MEN 2B mutations. Oncogene. 1997 Jan 23;14(3):265–275. doi: 10.1038/sj.onc.1200831. [DOI] [PubMed] [Google Scholar]
  39. Salomon R., Attié T., Pelet A., Bidaud C., Eng C., Amiel J., Sarnacki S., Goulet O., Ricour C., Nihoul-Fékété C. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet. 1996 Nov;14(3):345–347. doi: 10.1038/ng1196-345. [DOI] [PubMed] [Google Scholar]
  40. Santoro M., Carlomagno F., Romano A., Bottaro D. P., Dathan N. A., Grieco M., Fusco A., Vecchio G., Matoskova B., Kraus M. H. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science. 1995 Jan 20;267(5196):381–383. doi: 10.1126/science.7824936. [DOI] [PubMed] [Google Scholar]
  41. Schuchardt A., D'Agati V., Larsson-Blomberg L., Costantini F., Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994 Jan 27;367(6461):380–383. doi: 10.1038/367380a0. [DOI] [PubMed] [Google Scholar]
  42. Shapiro L., Fannon A. M., Kwong P. D., Thompson A., Lehmann M. S., Grübel G., Legrand J. F., Als-Nielsen J., Colman D. R., Hendrickson W. A. Structural basis of cell-cell adhesion by cadherins. Nature. 1995 Mar 23;374(6520):327–337. doi: 10.1038/374327a0. [DOI] [PubMed] [Google Scholar]
  43. Takahashi M., Asai N., Iwashita T., Isomura T., Miyazaki K., Matsuyama M. Characterization of the ret proto-oncogene products expressed in mouse L cells. Oncogene. 1993 Nov;8(11):2925–2929. [PubMed] [Google Scholar]
  44. Takahashi M., Buma Y., Iwamoto T., Inaguma Y., Ikeda H., Hiai H. Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene. 1988 Nov;3(5):571–578. [PubMed] [Google Scholar]
  45. Taniguchi M., Iwamoto T., Hamaguchi M., Matsuyama M., Takahashi M. The ret oncogene products are membrane-bound glycoproteins phosphorylated on tyrosine residues in vivo. Biochem Biophys Res Commun. 1991 Nov 27;181(1):416–422. doi: 10.1016/s0006-291x(05)81435-4. [DOI] [PubMed] [Google Scholar]
  46. Treanor J. J., Goodman L., de Sauvage F., Stone D. M., Poulsen K. T., Beck C. D., Gray C., Armanini M. P., Pollock R. A., Hefti F. Characterization of a multicomponent receptor for GDNF. Nature. 1996 Jul 4;382(6586):80–83. doi: 10.1038/382080a0. [DOI] [PubMed] [Google Scholar]
  47. Trupp M., Arenas E., Fainzilber M., Nilsson A. S., Sieber B. A., Grigoriou M., Kilkenny C., Salazar-Grueso E., Pachnis V., Arumäe U. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature. 1996 Jun 27;381(6585):785–789. doi: 10.1038/381785a0. [DOI] [PubMed] [Google Scholar]