Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs (original) (raw)
Abstract
Enteric pathogens induce intestinal epithelium to secrete chemokines that direct movement of polymorphonuclear leukocytes. Mechanisms that might downregulate secretion of these proinflammatory chemokines and thus contain intestinal inflammation have not yet been elucidated. The antiinflammatory activities exhibited by the arachidonate metabolite lipoxin A4 (LXA4) suggests that this eicosanoid, which is biosynthesized in vivo at sites of inflammation, might play such a role. We investigated whether chemokine secretion could be regulated by stable analogs of LXA4. Monolayers of T84 intestinal epithelial cells were infected with Salmonella typhimurium, which elicits secretion of distinct apical (pathogen-elicited epithelial chemoattractant) and basolateral (IL-8) chemokines. Stable analogs of LXA4 inhibited S. typhimurium-induced (but not phorbol ester-induced) secretion of both IL-8 and pathogen-elicited epithelial chemoattractant. LXA4 stable analogs did not alter bacterial adherence to nor internalization by epithelia, indicating that LXA4 stable analogs did not block all signals that Salmonella typhimurium activates in intestinal epithelia, but likely led to attenuation of signals that mediate chemokine secretion. Inhibition of S. typhimurium-induced IL-8 secretion by LXA4 analogs was concentration- (IC50 approximately 1 nM) and time-dependent (maximal inhibition approximately 1 h). As a result of these effects, LXA4 stable analogs inhibited the ability of bacteria-infected epithelia to direct polymorphonuclear leukocyte movement. These data suggest that LXA4 and its stable analogs may be useful in downregulating active inflammation at mucosal surfaces.
Full Text
The Full Text of this article is available as a PDF (293.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brunkhorst B. A., Lazzari K. G., Strohmeier G., Weil G., Simons E. R. Calcium changes in immune complex-stimulated human neutrophils. Simultaneous measurement of receptor occupancy and activation reveals full population stimulus binding but subpopulation activation. J Biol Chem. 1991 Jul 15;266(20):13035–13043. [PubMed] [Google Scholar]
- Clària J., Serhan C. N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9475–9479. doi: 10.1073/pnas.92.21.9475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colgan S. P., Serhan C. N., Parkos C. A., Delp-Archer C., Madara J. L. Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers. J Clin Invest. 1993 Jul;92(1):75–82. doi: 10.1172/JCI116601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahlén S. E., Franzén L., Raud J., Serhan C. N., Westlund P., Wikström E., Björck T., Matsuda H., Webber S. E., Veale C. A. Actions of lipoxin A4 and related compounds in smooth muscle preparations and on the microcirculation in vivo. Adv Exp Med Biol. 1988;229:107–130. doi: 10.1007/978-1-4757-0937-7_9. [DOI] [PubMed] [Google Scholar]
- Eckmann L., Jung H. C., Schürer-Maly C., Panja A., Morzycka-Wroblewska E., Kagnoff M. F. Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8. Gastroenterology. 1993 Dec;105(6):1689–1697. doi: 10.1016/0016-5085(93)91064-o. [DOI] [PubMed] [Google Scholar]
- Eckmann L., Kagnoff M. F., Fierer J. Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun. 1993 Nov;61(11):4569–4574. doi: 10.1128/iai.61.11.4569-4574.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finlay B. B. Interactions between Salmonella typhimurium, enteropathogenic Escherichia coli (EPEC), and host epithelial cells. Adv Dent Res. 1995 Feb;9(1):31–36. doi: 10.1177/08959374950090010601. [DOI] [PubMed] [Google Scholar]
- Fiore S., Romano M., Reardon E. M., Serhan C. N. Induction of functional lipoxin A4 receptors in HL-60 cells. Blood. 1993 Jun 15;81(12):3395–3403. [PubMed] [Google Scholar]
- Galán J. E., Ginocchio C. The molecular genetic bases of Salmonella entry into mammalian cells. Biochem Soc Trans. 1994 May;22(2):301–306. doi: 10.1042/bst0220301. [DOI] [PubMed] [Google Scholar]
- Grandordy B. M., Lacroix H., Mavoungou E., Krilis S., Crea A. E., Spur B. W., Lee T. H. Lipoxin A4 inhibits phosphoinositide hydrolysis in human neutrophils. Biochem Biophys Res Commun. 1990 Mar 30;167(3):1022–1029. doi: 10.1016/0006-291x(90)90625-w. [DOI] [PubMed] [Google Scholar]
- Hawkey C. J. Non-steroidal anti-inflammatory drug gastropathy: causes and treatment. Scand J Gastroenterol Suppl. 1996;220:124–127. doi: 10.3109/00365529609094763. [DOI] [PubMed] [Google Scholar]
- Jung H. C., Eckmann L., Yang S. K., Panja A., Fierer J., Morzycka-Wroblewska E., Kagnoff M. F. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest. 1995 Jan;95(1):55–65. doi: 10.1172/JCI117676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee T. H., Horton C. E., Kyan-Aung U., Haskard D., Crea A. E., Spur B. W. Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Clin Sci (Lond) 1989 Aug;77(2):195–203. doi: 10.1042/cs0770195. [DOI] [PubMed] [Google Scholar]
- Maddox J. F., Hachicha M., Takano T., Petasis N. A., Fokin V. V., Serhan C. N. Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem. 1997 Mar 14;272(11):6972–6978. doi: 10.1074/jbc.272.11.6972. [DOI] [PubMed] [Google Scholar]
- McCormick B. A., Colgan S. P., Delp-Archer C., Miller S. I., Madara J. L. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol. 1993 Nov;123(4):895–907. doi: 10.1083/jcb.123.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCormick B. A., Hofman P. M., Kim J., Carnes D. K., Miller S. I., Madara J. L. Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J Cell Biol. 1995 Dec;131(6 Pt 1):1599–1608. doi: 10.1083/jcb.131.6.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCormick B. A., Miller S. I., Carnes D., Madara J. L. Transepithelial signaling to neutrophils by salmonellae: a novel virulence mechanism for gastroenteritis. Infect Immun. 1995 Jun;63(6):2302–2309. doi: 10.1128/iai.63.6.2302-2309.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCormick B. A., Parkos C. A., Colgan S. P., Carnes D. K., Madara J. L. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol. 1998 Jan 1;160(1):455–466. [PubMed] [Google Scholar]
- Pace J., Hayman M. J., Galán J. E. Signal transduction and invasion of epithelial cells by S. typhimurium. Cell. 1993 Feb 26;72(4):505–514. doi: 10.1016/0092-8674(93)90070-7. [DOI] [PubMed] [Google Scholar]
- Parkos C. A., Delp C., Arnaout M. A., Madara J. L. Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction. J Clin Invest. 1991 Nov;88(5):1605–1612. doi: 10.1172/JCI115473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raud J., Palmertz U., Dahlén S. E., Hedqvist P. Lipoxins inhibit microvascular inflammatory actions of leukotriene B4. Adv Exp Med Biol. 1991;314:185–192. doi: 10.1007/978-1-4684-6024-7_11. [DOI] [PubMed] [Google Scholar]
- Read M. A., Neish A. S., Luscinskas F. W., Palombella V. J., Maniatis T., Collins T. The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity. 1995 May;2(5):493–506. doi: 10.1016/1074-7613(95)90030-6. [DOI] [PubMed] [Google Scholar]
- Romano M., Maddox J. F., Serhan C. N. Activation of human monocytes and the acute monocytic leukemia cell line (THP-1) by lipoxins involves unique signaling pathways for lipoxin A4 versus lipoxin B4: evidence for differential Ca2+ mobilization. J Immunol. 1996 Sep 1;157(5):2149–2154. [PubMed] [Google Scholar]
- Savkovic S. D., Koutsouris A., Hecht G. Attachment of a noninvasive enteric pathogen, enteropathogenic Escherichia coli, to cultured human intestinal epithelial monolayers induces transmigration of neutrophils. Infect Immun. 1996 Nov;64(11):4480–4487. doi: 10.1128/iai.64.11.4480-4487.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scalia R., Gefen J., Petasis N. A., Serhan C. N., Lefer A. M. Lipoxin A4 stable analogs inhibit leukocyte rolling and adherence in the rat mesenteric microvasculature: role of P-selectin. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9967–9972. doi: 10.1073/pnas.94.18.9967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serhan C. N. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins. 1997 Feb;53(2):107–137. doi: 10.1016/s0090-6980(97)00001-4. [DOI] [PubMed] [Google Scholar]
- Serhan C. N., Maddox J. F., Petasis N. A., Akritopoulou-Zanze I., Papayianni A., Brady H. R., Colgan S. P., Madara J. L. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry. 1995 Nov 7;34(44):14609–14615. doi: 10.1021/bi00044a041. [DOI] [PubMed] [Google Scholar]
- Takano T., Fiore S., Maddox J. F., Brady H. R., Petasis N. A., Serhan C. N. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J Exp Med. 1997 May 5;185(9):1693–1704. doi: 10.1084/jem.185.9.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamaoki J., Tagaya E., Yamawaki I., Konno K. Lipoxin A4 inhibits cholinergic neurotransmission through nitric oxide generation in the rabbit trachea. Eur J Pharmacol. 1995 Dec 20;287(3):233–238. doi: 10.1016/0014-2999(95)00490-4. [DOI] [PubMed] [Google Scholar]