Malaria parasite chitinase and penetration of the mosquito peritrophic membrane (original) (raw)

Abstract

Malaria parasites (ookinetes) appear to digest the peritrophic membrane in the mosquito midgut during penetration. Previous studies demonstrated that lectins specific for N-acetylglucosamine bind to the peritrophic membrane and proposed that the membrane contains chitin [Rudin, W. & Hecker, H. (1989) Parasitol. Res. 75, 268-279]. In the present study, we show that the peritrophic membrane is digested by Serratia marcescens chitinase (EC 3.2.1.14), leading to the release of N-acetylglucosamine and fragmentation of the membrane. We also report the presence of a malaria parasite chitinase that digests 4-methylumbelliferyl chitotriose. The enzyme is not detectable until 15 hr after zygote formation, the time required for maturation of the parasite from a zygote to an ookinete, the invasive form of the parasite. At 20 hr, the enzyme begins to appear in the culture supernatant. The chitinase extracted from the parasite and found in the culture supernatant consists of a major band and two minor bands of activity on native polyacrylamide gel electrophoresis. The presence of chitin in the peritrophic membrane, the disruption of the peritrophic membrane during invasion, and the presence of chitinase in ookinetes suggest that the chitinase in ookinetes is used in the penetration of the peritrophic membrane.

2807

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chiang R. G., Davey K. G. A novel receptor capable of monitoring applied pressure in the abdomen of an insect. Science. 1988 Sep 23;241(4873):1665–1667. doi: 10.1126/science.241.4873.1665. [DOI] [PubMed] [Google Scholar]
  2. FREYVOGEL T. A., STAEUBLI W. THE FORMATION OF THE PERITROPHIC MEMBRANE IN CULICIDAE. Acta Trop. 1965;22:118–147. [PubMed] [Google Scholar]
  3. Kaushal D. C., Carter R., Rener J., Grotendorst C. A., Miller L. H., Howard R. J. Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes. J Immunol. 1983 Nov;131(5):2557–2562. [PubMed] [Google Scholar]
  4. Kuranda M. J., Robbins P. W. Cloning and heterologous expression of glycosidase genes from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1987 May;84(9):2585–2589. doi: 10.1073/pnas.84.9.2585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lundblad G., Hederstedt B., Lind J., Steby M. Chitinase in goat serum. Preliminary purification and characterization. Eur J Biochem. 1974 Jul 15;46(2):367–376. doi: 10.1111/j.1432-1033.1974.tb03629.x. [DOI] [PubMed] [Google Scholar]
  6. Maeda H., Ishida N. Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J Biochem. 1967 Aug;62(2):276–278. doi: 10.1093/oxfordjournals.jbchem.a128660. [DOI] [PubMed] [Google Scholar]
  7. Perrone J. B., Spielman A. Microfilarial perforation of the midgut of a mosquito. J Parasitol. 1986 Oct;72(5):723–727. [PubMed] [Google Scholar]
  8. Perrone J. B., Spielman A. Time and site of assembly of the peritrophic membrane of the mosquito Aedes aegypti. Cell Tissue Res. 1988 May;252(2):473–478. doi: 10.1007/BF00214391. [DOI] [PubMed] [Google Scholar]
  9. Ponnudurai T., Billingsley P. F., Rudin W. Differential infectivity of Plasmodium for mosquitoes. Parasitol Today. 1988 Nov;4(11):319–321. doi: 10.1016/0169-4758(88)90114-7. [DOI] [PubMed] [Google Scholar]
  10. REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
  11. Richards A. G., Richards P. A. The peritrophic membranes of insects. Annu Rev Entomol. 1977;22:219–240. doi: 10.1146/annurev.en.22.010177.001251. [DOI] [PubMed] [Google Scholar]
  12. Roberts R. L., Cabib E. Serratia marcescens chitinase: one-step purification and use for the determination of chitin. Anal Biochem. 1982 Dec;127(2):402–412. doi: 10.1016/0003-2697(82)90194-4. [DOI] [PubMed] [Google Scholar]
  13. Rudin W., Hecker H. Lectin-binding sites in the midgut of the mosquitoes Anopheles stephensi Liston and Aedes aegypti L. (Diptera: Culicidae). Parasitol Res. 1989;75(4):268–279. doi: 10.1007/BF00931811. [DOI] [PubMed] [Google Scholar]
  14. Rudzinska M. A., Spielman A., Lewengrub S., Piesman J., Karakashian S. Penetration of the peritrophic membrane of the tick by Babesia microti. Cell Tissue Res. 1982;221(3):471–481. doi: 10.1007/BF00215696. [DOI] [PubMed] [Google Scholar]
  15. STOHLER H. Analyse des infektionsverlaufes von Plasmodium gallinaceum im Darme von Aedes aegypti. Acta Trop. 1957;14(4):302–352. [PubMed] [Google Scholar]
  16. Trudel J., Asselin A. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem. 1989 May 1;178(2):362–366. doi: 10.1016/0003-2697(89)90653-2. [DOI] [PubMed] [Google Scholar]
  17. Walters L. L., Modi G. B., Tesh R. B., Burrage T. Host-parasite relationship of Leishmania mexicana mexicana and Lutzomyia abonnenci (Diptera: Psychodidae). Am J Trop Med Hyg. 1987 Mar;36(2):294–314. doi: 10.4269/ajtmh.1987.36.294. [DOI] [PubMed] [Google Scholar]