Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone (original) (raw)
Abstract
Oxygen free radicals and oxidative events have been implicated as playing a role in bringing about the changes in cellular function that occur during aging. Brain readily undergoes oxidative damage, so it is important to determine if aging-induced changes in brain may be associated with oxidative events. Previously we demonstrated that brain damage caused by an ischemia/reperfusion insult involved oxidative events. In addition, pretreatment with the spin-trapping compound N-tert-butyl-alpha-phenylnitrone (PBN) diminished the increase in oxidized protein and the loss of glutamine synthetase (GS) activity that accompanied ischemia/reperfusion injury in brain. We report here that aged gerbils had a significantly higher level of oxidized protein as assessed by carbonyl residues and decreased GS and neutral protease activities as compared to young adult gerbils. We also found that chronic treatment with the spin-trapping compound PBN caused a decrease in the level of oxidized protein and an increase in both GS and neutral protease activity in aged Mongolian gerbil brain. In contrast to aged gerbils, PBN treatment of young adult gerbils had no significant effect on brain oxidized protein content or GS activity. Male gerbils, young adults (3 months of age) and retired breeders (15-18 months of age), were treated with PBN for 14 days with twice daily dosages of 32 mg/kg. If PBN administration was ceased after 2 weeks, the significantly decreased level of oxidized protein and increased GS and neutral protease activities in old gerbils changed in a monotonic fashion back to the levels observed in aged gerbils prior to PBN administration. We also report that old gerbils make more errors than young animals and that older gerbils treated with PBN made fewer errors in a radial arm maze test for temporal and spatial memory than the untreated aged controls. These data can be interpreted to indicate that oxidation of cellular proteins may be a critical determinant of brain function. Moreover, it also implies that there is an age-related increase in vulnerability of tissue to oxidation that can be modified by free radical trapping compounds.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
- Cao W., Carney J. M., Duchon A., Floyd R. A., Chevion M. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett. 1988 May 26;88(2):233–238. doi: 10.1016/0304-3940(88)90132-2. [DOI] [PubMed] [Google Scholar]
- Collerton D. Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience. 1986 Sep;19(1):1–28. doi: 10.1016/0306-4522(86)90002-3. [DOI] [PubMed] [Google Scholar]
- DeLeo J. A., Floyd R. A., Carney J. M. Increased in vitro lipid peroxidation of gerbil cerebral cortex as compared with rat. Neurosci Lett. 1986 Jun 6;67(1):63–67. doi: 10.1016/0304-3940(86)90209-0. [DOI] [PubMed] [Google Scholar]
- Fucci L., Oliver C. N., Coon M. J., Stadtman E. R. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1521–1525. doi: 10.1073/pnas.80.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALLGREN B., SOURANDER P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958 Oct;3(1):41–51. doi: 10.1111/j.1471-4159.1958.tb12607.x. [DOI] [PubMed] [Google Scholar]
- Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai E. K., Crossley C., Sridhar R., Misra H. P., Janzen E. G., McCay P. B. In vivo spin trapping of free radicals generated in brain, spleen, and liver during gamma radiation of mice. Arch Biochem Biophys. 1986 Jan;244(1):156–160. doi: 10.1016/0003-9861(86)90104-9. [DOI] [PubMed] [Google Scholar]
- Miller R. E., Hackenberg R., Gershman H. Regulation of glutamine synthetase in cultured 3T3-L1 cells by insulin, hydrocortisone, and dibutyryl cyclic AMP. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1418–1422. doi: 10.1073/pnas.75.3.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliver C. N., Ahn B. W., Moerman E. J., Goldstein S., Stadtman E. R. Age-related changes in oxidized proteins. J Biol Chem. 1987 Apr 25;262(12):5488–5491. [PubMed] [Google Scholar]
- Oliver C. N., Starke-Reed P. E., Stadtman E. R., Liu G. J., Carney J. M., Floyd R. A. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5144–5147. doi: 10.1073/pnas.87.13.5144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rivett A. J. The effect of mixed-function oxidation of enzymes on their susceptibility to degradation by a nonlysosomal cysteine proteinase. Arch Biochem Biophys. 1985 Dec;243(2):624–632. doi: 10.1016/0003-9861(85)90540-5. [DOI] [PubMed] [Google Scholar]
- Roseman J. E., Levine R. L. Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase. J Biol Chem. 1987 Feb 15;262(5):2101–2110. [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Stamford J. A., Kruk Z. L., Millar J. Regional differences in extracellular ascorbic acid levels in the rat brain determined by high speed cyclic voltammetry. Brain Res. 1984 May 14;299(2):289–295. doi: 10.1016/0006-8993(84)90710-8. [DOI] [PubMed] [Google Scholar]
- Starke-Reed P. E., Oliver C. N. Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys. 1989 Dec;275(2):559–567. doi: 10.1016/0003-9861(89)90402-5. [DOI] [PubMed] [Google Scholar]
- Zaleska M. M., Floyd R. A. Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem Res. 1985 Mar;10(3):397–410. doi: 10.1007/BF00964608. [DOI] [PubMed] [Google Scholar]
- Zaleska M. M., Nagy K., Floyd R. A. Iron-induced lipid peroxidation and inhibition of dopamine synthesis in striatum synaptosomes. Neurochem Res. 1989 Jul;14(7):597–605. doi: 10.1007/BF00964867. [DOI] [PubMed] [Google Scholar]