Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor (original) (raw)

Abstract

The construction of representative large insert DNA libraries is critical for the analysis of complex genomes. The predominant vector system for such work is the yeast artificial chromosome (YAC) system. Despite the success of YACs, many problems have been described including: chimerism, tedious steps in library construction and low yields of YAC insert DNA. Recently a new E.coli based system has been developed, the bacterial artificial chromosome (BAC) system, which offers many potential advantages over YACs. We tested the BAC system in plants by constructing an ordered 13,440 clone sorghum BAC library. The library has a combined average insert size, from single and double size selections, of 157 kb. Sorghum inserts of up to 315 kb were isolated and shown to be stable when grown for over 100 generations in liquid media. No chimeric clones were detected as determined by fluorescence in situ hybridization of ten BAC clones to metaphase and interphase S.bicolor nuclei. The library was screened with six sorghum probes and three maize probes and all but one sorghum probe hybridized to at least one BAC clone in the library. To facilitate chromosome walking with the BAC system, methods were developed to isolate the proximal ends of restriction fragments inserted into the BAC vector and used to isolate both the left and right ends of six randomly selected BAC clones. These results demonstrate that the S. bicolor BAC library will be useful for several physical mapping and map-based cloning applications not only in sorghum but other related cereal genomes, such as maize. Furthermore, we conclude that the BAC system is suitable for most large genome applications, is more 'user friendly' than the YAC system, and will likely lead to rapid progress in cloning biologically significant genes from plants.

4922

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Anderson J. A., Sorrells M. E., Tanksley S. D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet. 1993 Dec;241(5-6):483–490. doi: 10.1007/BF00279889. [DOI] [PubMed] [Google Scholar]
  2. Albertsen H. M., Abderrahim H., Cann H. M., Dausset J., Le Paslier D., Cohen D. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4256–4260. doi: 10.1073/pnas.87.11.4256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anand R., Villasante A., Tyler-Smith C. Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field gel electrophoresis. Nucleic Acids Res. 1989 May 11;17(9):3425–3433. doi: 10.1093/nar/17.9.3425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson C. Genome shortcut leads to problems. Science. 1993 Mar 19;259(5102):1684–1687. doi: 10.1126/science.8456291. [DOI] [PubMed] [Google Scholar]
  5. Arondel V., Lemieux B., Hwang I., Gibson S., Goodman H. M., Somerville C. R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science. 1992 Nov 20;258(5086):1353–1355. doi: 10.1126/science.1455229. [DOI] [PubMed] [Google Scholar]
  6. Ballabio A. The rise and fall of positional cloning? Nat Genet. 1993 Apr;3(4):277–279. doi: 10.1038/ng0493-277. [DOI] [PubMed] [Google Scholar]
  7. Bronson S. K., Pei J., Taillon-Miller P., Chorney M. J., Geraghty D. E., Chaplin D. D. Isolation and characterization of yeast artificial chromosome clones linking the HLA-B and HLA-C loci. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1676–1680. doi: 10.1073/pnas.88.5.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burgers P. M., Percival K. J. Transformation of yeast spheroplasts without cell fusion. Anal Biochem. 1987 Jun;163(2):391–397. doi: 10.1016/0003-2697(87)90240-5. [DOI] [PubMed] [Google Scholar]
  9. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  10. Casas A. M., Kononowicz A. K., Zehr U. B., Tomes D. T., Axtell J. D., Butler L. G., Bressan R. A., Hasegawa P. M. Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11212–11216. doi: 10.1073/pnas.90.23.11212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  12. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Collins F. S., Weissman S. M. Directional cloning of DNA fragments at a large distance from an initial probe: a circularization method. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6812–6816. doi: 10.1073/pnas.81.21.6812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Driesen M. S., Dauwerse J. G., Wapenaar M. C., Meershoek E. J., Mollevanger P., Chen K. L., Fischbeck K. H., van Ommen G. J. Generation and fluorescent in situ hybridization mapping of yeast artificial chromosomes of 1p, 17p, 17q, and 19q from a hybrid cell line by high-density screening of an amplified library. Genomics. 1991 Dec;11(4):1079–1087. doi: 10.1016/0888-7543(91)90035-d. [DOI] [PubMed] [Google Scholar]
  15. Dunford R., Rogner U. C. Construction of yeast artificial chromosomes containing barley DNA and the identification of clones carrying copies of the repeated element BIS-1. Hereditas. 1991;115(2):133–138. doi: 10.1111/j.1601-5223.1991.tb03547.x. [DOI] [PubMed] [Google Scholar]
  16. Edwards K. J., Thompson H., Edwards D., de Saizieu A., Sparks C., Thompson J. A., Greenland A. J., Eyers M., Schuch W. Construction and characterisation of a yeast artificial chromosome library containing three haploid maize genome equivalents. Plant Mol Biol. 1992 May;19(2):299–308. doi: 10.1007/BF00027351. [DOI] [PubMed] [Google Scholar]
  17. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  18. Garza D., Ajioka J. W., Burke D. T., Hartl D. L. Mapping the Drosophila genome with yeast artificial chromosomes. Science. 1989 Nov 3;246(4930):641–646. doi: 10.1126/science.2510296. [DOI] [PubMed] [Google Scholar]
  19. Green E. D., Riethman H. C., Dutchik J. E., Olson M. V. Detection and characterization of chimeric yeast artificial-chromosome clones. Genomics. 1991 Nov;11(3):658–669. doi: 10.1016/0888-7543(91)90073-n. [DOI] [PubMed] [Google Scholar]
  20. Grill E., Somerville C. Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking. Mol Gen Genet. 1991 May;226(3):484–490. doi: 10.1007/BF00260662. [DOI] [PubMed] [Google Scholar]
  21. Hanahan D., Jessee J., Bloom F. R. Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol. 1991;204:63–113. doi: 10.1016/0076-6879(91)04006-a. [DOI] [PubMed] [Google Scholar]
  22. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  23. Hulbert S. H., Richter T. E., Axtell J. D., Bennetzen J. L. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4251–4255. doi: 10.1073/pnas.87.11.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Imai T., Olson M. V. Second-generation approach to the construction of yeast artificial-chromosome libraries. Genomics. 1990 Oct;8(2):297–303. doi: 10.1016/0888-7543(90)90285-3. [DOI] [PubMed] [Google Scholar]
  25. Ioannou P. A., Amemiya C. T., Garnes J., Kroisel P. M., Shizuya H., Chen C., Batzer M. A., de Jong P. J. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet. 1994 Jan;6(1):84–89. doi: 10.1038/ng0194-84. [DOI] [PubMed] [Google Scholar]
  26. Kim U. J., Shizuya H., de Jong P. J., Birren B., Simon M. I. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res. 1992 Mar 11;20(5):1083–1085. doi: 10.1093/nar/20.5.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Larin Z., Monaco A. P., Lehrach H. Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4123–4127. doi: 10.1073/pnas.88.10.4123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lawrence J. B., Singer R. H., McNeil J. A. Interphase and metaphase resolution of different distances within the human dystrophin gene. Science. 1990 Aug 24;249(4971):928–932. doi: 10.1126/science.2203143. [DOI] [PubMed] [Google Scholar]
  29. Leyser H. M., Lincoln C. A., Timpte C., Lammer D., Turner J., Estelle M. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature. 1993 Jul 8;364(6433):161–164. doi: 10.1038/364161a0. [DOI] [PubMed] [Google Scholar]
  30. Libert F., Lefort A., Okimoto R., Womack J., Georges M. Construction of a bovine genomic library of large yeast artificial chromosome clones. Genomics. 1993 Nov;18(2):270–276. doi: 10.1006/geno.1993.1465. [DOI] [PubMed] [Google Scholar]
  31. Lovett M., Kere J., Hinton L. M. Direct selection: a method for the isolation of cDNAs encoded by large genomic regions. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9628–9632. doi: 10.1073/pnas.88.21.9628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
  33. Martin G. B., Ganal M. W., Tanksley S. D. Construction of a yeast artificial chromosome library of tomato and identification of cloned segments linked to two disease resistance loci. Mol Gen Genet. 1992 May;233(1-2):25–32. doi: 10.1007/BF00587557. [DOI] [PubMed] [Google Scholar]
  34. O'Connor M., Peifer M., Bender W. Construction of large DNA segments in Escherichia coli. Science. 1989 Jun 16;244(4910):1307–1312. doi: 10.1126/science.2660262. [DOI] [PubMed] [Google Scholar]
  35. Ochman H., Gerber A. S., Hartl D. L. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988 Nov;120(3):621–623. doi: 10.1093/genetics/120.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Orbach M. J., Vollrath D., Davis R. W., Yanofsky C. An electrophoretic karyotype of Neurospora crassa. Mol Cell Biol. 1988 Apr;8(4):1469–1473. doi: 10.1128/mcb.8.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rommens J. M., Iannuzzi M. C., Kerem B., Drumm M. L., Melmer G., Dean M., Rozmahel R., Cole J. L., Kennedy D., Hidaka N. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989 Sep 8;245(4922):1059–1065. doi: 10.1126/science.2772657. [DOI] [PubMed] [Google Scholar]
  38. Shizuya H., Birren B., Kim U. J., Mancino V., Slepak T., Tachiiri Y., Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8794–8797. doi: 10.1073/pnas.89.18.8794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Silverman G. A., Ye R. D., Pollock K. M., Sadler J. E., Korsmeyer S. J. Use of yeast artificial chromosome clones for mapping and walking within human chromosome segment 18q21.3. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7485–7489. doi: 10.1073/pnas.86.19.7485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sternberg N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc Natl Acad Sci U S A. 1990 Jan;87(1):103–107. doi: 10.1073/pnas.87.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Trask B. J., Massa H. F., Burmeister M. Fluorescence in situ hybridization establishes the order cen-DXS28(C7)-DXS67(B24)-DXS68(L1)-tel in human chromosome Xp21.3. Genomics. 1992 Jun;13(2):455–457. doi: 10.1016/0888-7543(92)90271-s. [DOI] [PubMed] [Google Scholar]
  42. Wada M., Little R. D., Abidi F., Porta G., Labella T., Cooper T., Della Valle G., D'Urso M., Schlessinger D. Human Xq24-Xq28: approaches to mapping with yeast artificial chromosomes. Am J Hum Genet. 1990 Jan;46(1):95–106. [PMC free article] [PubMed] [Google Scholar]
  43. Ward E. R., Jen G. C. Isolation of single-copy-sequence clones from a yeast artificial chromosome library of randomly-sheared Arabidopsis thaliana DNA. Plant Mol Biol. 1990 Apr;14(4):561–568. doi: 10.1007/BF00027501. [DOI] [PubMed] [Google Scholar]
  44. Whitkus R., Doebley J., Lee M. Comparative genome mapping of Sorghum and maize. Genetics. 1992 Dec;132(4):1119–1130. doi: 10.1093/genetics/132.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wing R. A., Rastogi V. K., Zhang H. B., Paterson A. H., Tanksley S. D. An improved method of plant megabase DNA isolation in agarose microbeads suitable for physical mapping and YAC cloning. Plant J. 1993 Nov;4(5):893–898. doi: 10.1046/j.1365-313x.1993.04050893.x. [DOI] [PubMed] [Google Scholar]
  46. Wing R. A., Zhang H. B., Tanksley S. D. Map-based cloning in crop plants. Tomato as a model system: I. Genetic and physical mapping of jointless. Mol Gen Genet. 1994 Mar;242(6):681–688. doi: 10.1007/BF00283423. [DOI] [PubMed] [Google Scholar]