The concept of symmorphosis: a testable hypothesis of structure-function relationship (original) (raw)
Abstract
The hypothesis that, in biological organisms, structural design is matched to functional demand is difficult to test because it is largely based on anecdotal evidence suggesting economic design. The hypothesis of symmorphosis postulates a quantitative match of design and function parameters within a defined functional system; because of its stringency it is refutable and can, therefore, be subjected to empirical test, for example, by assessing whether the structures that support the pathway for oxygen from the lung to the consumer in muscle cells are quantitatively adjusted to the limit of functional performance of the respiratory system. The study of allometric and adaptive variation leads to the conclusion that the hypothesis of symmorphosis is acceptable for all internal compartments of the respiratory system (blood, heart, muscle capillaries, and mitochondria), whereas it must be refuted for the lung that forms the interface to the environment.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTELS H. COMPARATIVE PHYSIOLOGY OF OXYGEN TRANSPORT IN MAMMALS. Lancet. 1964 Sep 19;2(7360):601–604. [PubMed] [Google Scholar]
- Constantinopol M., Jones J. H., Weibel E. R., Taylor C. R., Lindholm A., Karas R. H. Oxygen transport during exercise in large mammals. II. Oxygen uptake by the pulmonary gas exchanger. J Appl Physiol (1985) 1989 Aug;67(2):871–878. doi: 10.1152/jappl.1989.67.2.871. [DOI] [PubMed] [Google Scholar]
- Crowell J. W., Smith E. E. Determinant of the optimal hematocrit. J Appl Physiol. 1967 Mar;22(3):501–504. doi: 10.1152/jappl.1967.22.3.501. [DOI] [PubMed] [Google Scholar]
- Gehr P., Mwangi D. K., Ammann A., Maloiy G. M., Taylor C. R., Weibel E. R. Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic mammals. Respir Physiol. 1981 Apr;44(1):61–86. doi: 10.1016/0034-5687(81)90077-3. [DOI] [PubMed] [Google Scholar]
- Hoppeler H., Lindstedt S. L. Malleability of skeletal muscle in overcoming limitations: structural elements. J Exp Biol. 1985 Mar;115:355–364. doi: 10.1242/jeb.115.1.355. [DOI] [PubMed] [Google Scholar]
- Hoppeler H., Mathieu O., Krauer R., Claassen H., Armstrong R. B., Weibel E. R. Design of the mammalian respiratory system. VI Distribution of mitochondria and capillaries in various muscles. Respir Physiol. 1981 Apr;44(1):87–111. doi: 10.1016/0034-5687(81)90078-5. [DOI] [PubMed] [Google Scholar]
- Hoppeler H., Mathieu O., Weibel E. R., Krauer R., Lindstedt S. L., Taylor C. R. Design of the mammalian respiratory system. VIII Capillaries in skeletal muscles. Respir Physiol. 1981 Apr;44(1):129–150. doi: 10.1016/0034-5687(81)90080-3. [DOI] [PubMed] [Google Scholar]
- Hoppeler H. The different relationship of VO2max to muscle mitochondria in humans and quadrupedal animals. Respir Physiol. 1990 May-Jun;80(2-3):137–145. doi: 10.1016/0034-5687(90)90077-c. [DOI] [PubMed] [Google Scholar]
- Jones J. H., Longworth K. E., Lindholm A., Conley K. E., Karas R. H., Kayar S. R., Taylor C. R. Oxygen transport during exercise in large mammals. I. Adaptive variation in oxygen demand. J Appl Physiol (1985) 1989 Aug;67(2):862–870. doi: 10.1152/jappl.1989.67.2.862. [DOI] [PubMed] [Google Scholar]
- Mathieu O., Cruz-Orive L. M., Hoppeler H., Weibel E. R. Estimating length density and quantifying anisotropy in skeletal muscle capillaries. J Microsc. 1983 Aug;131(Pt 2):131–146. doi: 10.1111/j.1365-2818.1983.tb04240.x. [DOI] [PubMed] [Google Scholar]
- Mathieu O., Krauer R., Hoppeler H., Gehr P., Lindstedt S. L., Alexander R. M., Taylor C. R., Weibel E. R. Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass. Respir Physiol. 1981 Apr;44(1):113–128. doi: 10.1016/0034-5687(81)90079-7. [DOI] [PubMed] [Google Scholar]
- Prothero J. Heart weight as a function of body weight in mammals. Growth. 1979 Sep;43(3):139–150. [PubMed] [Google Scholar]
- Schwerzmann K., Hoppeler H., Kayar S. R., Weibel E. R. Oxidative capacity of muscle and mitochondria: correlation of physiological, biochemical, and morphometric characteristics. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1583–1587. doi: 10.1073/pnas.86.5.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeherman H. J., Taylor C. R., Maloiy G. M., Armstrong R. B. Design of the mammalian respiratory system. II. Measuring maximum aerobic capacity. Respir Physiol. 1981 Apr;44(1):11–23. doi: 10.1016/0034-5687(81)90074-8. [DOI] [PubMed] [Google Scholar]
- Stahl W. R. Scaling of respiratory variables in mammals. J Appl Physiol. 1967 Mar;22(3):453–460. doi: 10.1152/jappl.1967.22.3.453. [DOI] [PubMed] [Google Scholar]
- Taylor C. R., Karas R. H., Weibel E. R., Hoppeler H. Adaptive variation in the mammalian respiratory system in relation to energetic demand. Respir Physiol. 1987 Jul;69(1):1–127. doi: 10.1016/0034-5687(87)90097-1. [DOI] [PubMed] [Google Scholar]
- Taylor C. R., Maloiy G. M., Weibel E. R., Langman V. A., Kamau J. M., Seeherman H. J., Heglund N. C. Design of the mammalian respiratory system. III Scaling maximum aerobic capacity to body mass: wild and domestic mammals. Respir Physiol. 1981 Apr;44(1):25–37. doi: 10.1016/0034-5687(81)90075-x. [DOI] [PubMed] [Google Scholar]
- Taylor C. R., Weibel E. R. Design of the mammalian respiratory system. I. Problem and strategy. Respir Physiol. 1981 Apr;44(1):1–10. [PubMed] [Google Scholar]
- Weibel E. R. Morphometric estimation of pulmonary diffusion capacity. I. Model and method. Respir Physiol. 1970;11(1):54–75. doi: 10.1016/0034-5687(70)90102-7. [DOI] [PubMed] [Google Scholar]
- Weibel E. R., Taylor C. R., Gehr P., Hoppeler H., Mathieu O., Maloiy G. M. Design of the mammalian respiratory system. IX. Functional and structural limits for oxygen flow. Respir Physiol. 1981 Apr;44(1):151–164. doi: 10.1016/0034-5687(81)90081-5. [DOI] [PubMed] [Google Scholar]