Central nervous system neurons migrate on astroglial fibers from heterotypic brain regions in vitro (original) (raw)

Abstract

In different regions of the developing mammalian brain, neurons follow the processes of radial glial cells over very different trajectories to reach their destinations in specific neuronal layers. To investigate whether the movement of neurons along glial fibers is specified by glia in a given region or whether glia provide a permissive substrate for migration in different brain regions, we purified neurons and astroglial cells from developing cerebellum and hippocampus and analyzed neuronal migration on heterotypic glial fibers with time-lapse, video-enhanced differential interference microscopy in vitro. Granule neurons purified from early postnatal rat cerebellum migrated on astroglial processes of glia purified from late embryonic or early postnatal rat hippocampus with a cytology, neuron-glial relationship, and dynamics of movement that were indistinguishable from those of mouse granule cells migrating on cerebellar astroglial processes in vitro [Edmondson, J. C. & Hatten, M. E. (1987) J. Neurosci. 7, 1928-1934]. In the reciprocal combination, hippocampal neurons migrated on cerebellar glial processes in a manner that was also remarkably similar to migration along homotypic, hippocampal glial fibers [Gasser, U. E. & Hatten, M. E. (1990) J. Neurosci. 10, 1276-1285]. In all cases, migrating neurons had a characteristic appearance, apposing their cell soma against the glial fiber and extending in the direction of migration a motile, leading process that enfolded the glial fiber with short filopodia and lamellipodia. As seen by video microscopy, neurons moved along homotypic and heterotypic glial processes by translocation of the soma and were not "pulled" forward by the leading process. As the neuron moved, the nucleus remained in the posterior portion of the cell and cytoplasmic vesicles moved forward from the soma into the leading process. The dynamics of the movement of neurons along heterotypic glial substrates, including the speed and periodicity of motion, was identical to that of neurons migrating along homotypic glial substrates. These experiments suggest that the mechanism of movement of neurons along glial fibers is conserved in these two brain regions during development.

4543

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banker G. A., Cowan W. M. Further observations on hippocampal neurons in dispersed cell culture. J Comp Neurol. 1979 Oct 1;187(3):469–493. doi: 10.1002/cne.901870302. [DOI] [PubMed] [Google Scholar]
  2. Banker G. A., Cowan W. M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 1977 May 13;126(3):397–342. doi: 10.1016/0006-8993(77)90594-7. [DOI] [PubMed] [Google Scholar]
  3. Caviness V. S., Jr Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res. 1982 Jul;256(3):293–302. doi: 10.1016/0165-3806(82)90141-9. [DOI] [PubMed] [Google Scholar]
  4. Caviness V. S., Jr Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse. J Comp Neurol. 1976 Dec 15;170(4):435–447. doi: 10.1002/cne.901700404. [DOI] [PubMed] [Google Scholar]
  5. Caviness V. S., Jr, Rakic P. Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci. 1978;1:297–326. doi: 10.1146/annurev.ne.01.030178.001501. [DOI] [PubMed] [Google Scholar]
  6. Caviness V. S., Jr Time of neuron origin in the hippocampus and dentate gyrus of normal and reeler mutant mice: an autoradiographic analysis. J Comp Neurol. 1973 Sep 15;151(2):113–120. doi: 10.1002/cne.901510203. [DOI] [PubMed] [Google Scholar]
  7. Eckenhoff M. F., Rakic P. Radial organization of the hippocampal dentate gyrus: a Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey. J Comp Neurol. 1984 Feb 10;223(1):1–21. doi: 10.1002/cne.902230102. [DOI] [PubMed] [Google Scholar]
  8. Edelman G. M., Chuong C. M. Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7036–7040. doi: 10.1073/pnas.79.22.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edmondson J. C., Hatten M. E. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J Neurosci. 1987 Jun;7(6):1928–1934. doi: 10.1523/JNEUROSCI.07-06-01928.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edmondson J. C., Liem R. K., Kuster J. E., Hatten M. E. Astrotactin: a novel neuronal cell surface antigen that mediates neuron-astroglial interactions in cerebellar microcultures. J Cell Biol. 1988 Feb;106(2):505–517. doi: 10.1083/jcb.106.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Faissner A., Kruse J., Nieke J., Schachner M. Expression of neural cell adhesion molecule L1 during development, in neurological mutants and in the peripheral nervous system. Brain Res. 1984 Jul;317(1):69–82. doi: 10.1016/0165-3806(84)90141-x. [DOI] [PubMed] [Google Scholar]
  12. Gasser U. E., Hatten M. E. Neuron-glia interactions of rat hippocampal cells in vitro: glial-guided neuronal migration and neuronal regulation of glial differentiation. J Neurosci. 1990 Apr;10(4):1276–1285. doi: 10.1523/JNEUROSCI.10-04-01276.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gregory W. A., Edmondson J. C., Hatten M. E., Mason C. A. Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro. J Neurosci. 1988 May;8(5):1728–1738. doi: 10.1523/JNEUROSCI.08-05-01728.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hatten M. E., Liem R. K. Astroglial cells provide a template for the positioning of developing cerebellar neurons in vitro. J Cell Biol. 1981 Sep;90(3):622–630. doi: 10.1083/jcb.90.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hatten M. E., Liem R. K., Mason C. A. Two forms of cerebellar glial cells interact differently with neurons in vitro. J Cell Biol. 1984 Jan;98(1):193–204. doi: 10.1083/jcb.98.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hatten M. E., Liem R. K., Mason C. A. Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J Neurosci. 1986 Sep;6(9):2676–2683. doi: 10.1523/JNEUROSCI.06-09-02676.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hatten M. E. Neuronal inhibition of astroglial cell proliferation is membrane mediated. J Cell Biol. 1987 May;104(5):1353–1360. doi: 10.1083/jcb.104.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hatten M. E. Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol. 1985 Feb;100(2):384–396. doi: 10.1083/jcb.100.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hine R. J., Das G. D. Neuroembryogenesis in the hippocampal formation of the rat. An autoradiographic study. Z Anat Entwicklungsgesch. 1974;144(2):173–186. doi: 10.1007/BF00519773. [DOI] [PubMed] [Google Scholar]
  20. Jensen K. F., Killackey H. P. Subcortical projections from ectopic neocortical neurons. Proc Natl Acad Sci U S A. 1984 Feb;81(3):964–968. doi: 10.1073/pnas.81.3.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lemmon V., Pearlman A. L. Does laminar position determine the receptive field properties of cortical neurons? A study of corticotectal cells in area 17 of the normal mouse and the reeler mutant. J Neurosci. 1981 Jan;1(1):83–93. doi: 10.1523/JNEUROSCI.01-01-00083.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McConnell S. K. Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J Neurosci. 1988 Mar;8(3):945–974. doi: 10.1523/JNEUROSCI.08-03-00945.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McConnell S. K. Migration and differentiation of cerebral cortical neurons after transplantation into the brains of ferrets. Science. 1985 Sep 20;229(4719):1268–1271. doi: 10.1126/science.4035355. [DOI] [PubMed] [Google Scholar]
  24. Nowakowski R. S., Rakic P. The mode of migration of neurons to the hippocampus: a Golgi and electron microscopic analysis in foetal rhesus monkey. J Neurocytol. 1979 Dec;8(6):697–718. doi: 10.1007/BF01206671. [DOI] [PubMed] [Google Scholar]
  25. Pinto-Lord M. C., Evrard P., Caviness V. S., Jr Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. Brain Res. 1982 Aug;256(4):379–393. doi: 10.1016/0165-3806(82)90181-x. [DOI] [PubMed] [Google Scholar]
  26. Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972 May;145(1):61–83. doi: 10.1002/cne.901450105. [DOI] [PubMed] [Google Scholar]
  27. Rakic P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol. 1971 Mar;141(3):283–312. doi: 10.1002/cne.901410303. [DOI] [PubMed] [Google Scholar]
  28. Rakic P., Sidman R. L. Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci U S A. 1973 Jan;70(1):240–244. doi: 10.1073/pnas.70.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rakic P., Stensas L. J., Sayre E., Sidman R. L. Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain. Nature. 1974 Jul 5;250(461):31–34. doi: 10.1038/250031a0. [DOI] [PubMed] [Google Scholar]
  30. Sidman R. L., Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973 Nov 9;62(1):1–35. doi: 10.1016/0006-8993(73)90617-3. [DOI] [PubMed] [Google Scholar]
  31. Sotelo C., Changeux J. P. Bergmann fibers and granular cell migration in the cerebellum of homozygous weaver mutant mouse. Brain Res. 1974 Sep 13;77(3):484–491. doi: 10.1016/0006-8993(74)90636-2. [DOI] [PubMed] [Google Scholar]
  32. Yurkewicz L., Valentino K. L., Floeter M. K., Fleshman J. W., Jr, Jones E. G. Effects of cytotoxic deletions of somatic sensory cortex in fetal rats. Somatosens Res. 1984;1(4):303–327. doi: 10.3109/07367228409144553. [DOI] [PubMed] [Google Scholar]