No phylogeny without ontogeny — a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms (original) (raw)
Abstract
A comprehensive review is presented of reported aspects and putative mechanisms of sleep-like motility rhythms throughout the animal kingdom. It is proposed that ‘rapid eye movement (REM) sleep’ be regarded as a special case of a distinct but much broader category of behavior, ‘rapid body movement (RBM) sleep’, defined by intrinsically-generated and apparently non-purposive movements. Such a classification completes a 2 × 2 matrix defined by the axes sleep versus waking and active versus quiet. Although ‘paradoxical’ arousal of forebrain electrical activity is restricted to warm-blooded vertebrates, we urge that juvenile or even infantile stages of development be investigated in cold-blooded animals, in view of the many reports of REM-like spontaneous motility (RBMs) in a wide range of species during sleep. The neurophysiological bases for motorically active sleep at the brainstem level and for slow-wave sleep in the forebrain appear to be remarkably similar, and to be subserved in both cases by a primitive diffuse mode of neuronal organization. Thus, the spontaneous synchronous burst discharges which are characteristics of the sleeping brain can be readily simulated even by highly unstructured neural network models. Neuromotor discharges during active sleep appear to reflect a hierarchy of simple relaxation oscillation mechanisms, spanning a wide range of spike-dependent relaxation times, whereas the periodic alternation of active and quiet sleep states more likely results from the entrainment of intrinsic cellular rhythms and/or from activity-dependent homeostatic changes in network excitability.
Keywords: sleep, cortical arousal, development, evolution, neural network models, brain rhythms, spontaneous motility, neuroplasticity
References
- [1].Siegel J.M. Do all animals sleep? Trends Neurosci. 2008;31:208–213. doi: 10.1016/j.tins.2008.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Lesku J.A., Martinez-Gonzales D., Rattenborn N.C. Sleep and sleep states: phylogeny and ontogeny. Encyclop Neurosci. 2009;8:963–971. [Google Scholar]
- [3].Zimmerman J.E., Naidoo N., Raizen D.M., Pack A.I. Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci. 2008;37:1–6. doi: 10.1016/j.tins.2008.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Kavanau J.L. Is sleep’s ’supreme mystery’ unraveling? Med Hypotheses. 2005;66:3–9. doi: 10.1016/j.mehy.2005.08.036. [DOI] [PubMed] [Google Scholar]
- [5].Koizumi O. Nerve ring of the hypostome in hydra: is it an origin of the central nervous system of bilaterian animals? Brain Behav Evol. 2007;69:151–159. doi: 10.1159/000095204. [DOI] [PubMed] [Google Scholar]
- [6].Tononi G., Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10:49–62. doi: 10.1016/j.smrv.2005.05.002. [DOI] [PubMed] [Google Scholar]
- [7].Tobler I. Phylogeny of sleep regulation. In: Kryger M., Roth T., Dement W., editors. Principles and Practice of Sleep Medicine. Amsterdam: Elsevier; 2010. pp. 112–125. [Google Scholar]
- [8].Corner M.A., van Pelt J., Wolters P.S., Baker R.E., Nuytinck R.H. Effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neural networks — an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobehav Rev. 2002;26:127–185. doi: 10.1016/S0149-7634(01)00062-8. [DOI] [PubMed] [Google Scholar]
- [9].Corner M.A. Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: a review of activity-dependent studies in live ‘model’ systems for the development of intrinsically generated bioelectric slow-wave sleep patterns. Brain Res Rev. 2008;59:221–244. doi: 10.1016/j.brainresrev.2008.08.001. [DOI] [PubMed] [Google Scholar]
- [10].Corner M.A. Sleep and the beginnings of behavior in the animal kingdom. Prog Neurobiol. 1977;8:279–285. doi: 10.1016/0301-0082(77)90008-9. [DOI] [PubMed] [Google Scholar]
- [11].Corner M.A. Spontaneous motility rhythms during early development — phenomenological and neurophysiological considerations. Prog Brain Res. 1978;48:349–366. doi: 10.1016/S0079-6123(08)61034-1. [DOI] [PubMed] [Google Scholar]
- [12].Kuznetsov S.V. To the problem on nature and origin of ancient rhythms of excitation. J Evol Biochem Physiol. 1999;35:456–467. [Google Scholar]
- [13].Krueger J.M., Rector D.M., Roy S., Van Dongen H.P., Belenky G., Panksepp J. Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci. 2008;9:910–919. doi: 10.1038/nrn2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Frank G.F., Page J., Heller H.C. The effects of REM sleep-inhibiting drugs in neonatal rats: evidence for a distinction between neonatal active sleep and REM sleep. Brain Res. 1997;778:64–72. doi: 10.1016/S0006-8993(97)00986-4. [DOI] [PubMed] [Google Scholar]
- [15].Corner M.A., Mirmiran M. Arousal episodes during sleep in the neonatal rat. Neurosci Lett. 1983;42:45–48. doi: 10.1016/0304-3940(83)90419-6. [DOI] [PubMed] [Google Scholar]
- [16].Jouvet M. Neurophysiology of the states of sleep. Physiol Rev. 1967;17:117–177. doi: 10.1152/physrev.1967.47.2.117. [DOI] [PubMed] [Google Scholar]
- [17].Steriade M., Hobson J.A. Neuronal activity during the sleep-wake cycle. Prog Neurobiol. 1967;6:155–376. [PubMed] [Google Scholar]
- [18].Corner M.A. The sleep-like nature of early mammalian behavioral rhythms. Behav Neurosci. 2010;124:175–178. doi: 10.1037/a0018483. [DOI] [PubMed] [Google Scholar]
- [19].Jouvet M. Paradoxical sleep — a study of its nature and mechanisms. Prog Brain Res. 1965;18:20–57. doi: 10.1016/S0079-6123(08)63582-7. [DOI] [PubMed] [Google Scholar]
- [20].Corner M.A. Ontogeny of brain sleep mechanisms. In: McGinty D.J., editor. Brain Mechanisms of Sleep. New York: Raven Press; 1985. pp. 175–197. [Google Scholar]
- [21].Morrison A.R. Motor control in sleep. In: Aminoff M., editor. Handbook of Clinical Neurology — Sleep Disorders. Amsterdam: Elsevier; 2011. pp. 169–184. [Google Scholar]
- [22].Kleitman N. Sleep and Wakefulness. Chicago: Univ Chicago Press; 1963. [Google Scholar]
- [23].Corner M.A. Reciprocity of structure-function relations in developing neural networks. Prog Brain Res. 1994;102:3–31. doi: 10.1016/S0079-6123(08)60529-4. [DOI] [PubMed] [Google Scholar]
- [24].Krueger J.M., Obal F. A neuronal group theory of sleep function. J Sleep Res. 1993;2:63–69. doi: 10.1111/j.1365-2869.1993.tb00064.x. [DOI] [PubMed] [Google Scholar]
- [25].Mahowald M.W., Cramer Bornemann M.A., Schenck C.H. State dissociation, human behavior and consciousness. Curr Top Med Chem. 2011;11:2392–2402. doi: 10.2174/156802611797470277. [DOI] [PubMed] [Google Scholar]
- [26].Schenck C.H., Mahowald M.W. REM sleep behavior disorder: clinical, developmental and neuroscience perspectives. Sleep. 2002;25:120–138. doi: 10.1093/sleep/25.2.120. [DOI] [PubMed] [Google Scholar]
- [27].Raizen D.M., Zimmerman J.E., Maycock M.H., Ta U.D., You Y.J., Sundaram M.V., et al. Lethargus is a Caenorhabditis elegans sleep-like state. Nature. 2008;451:569–572. doi: 10.1038/nature06535. [DOI] [PubMed] [Google Scholar]
- [28].Cirelli C., Bushey D. Sleep and wakefulness in Drosophila melanogaster. Ann NY Acad Sci. 2008;1129:323–329. doi: 10.1196/annals.1417.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [29].Sauer S., Kinkelin M., Herrmann E., Kaiser W. The dynamics of sleep-like behavior in honey bees. J Comp Physiol A. 2003;189:599–607. doi: 10.1007/s00359-003-0436-9. [DOI] [PubMed] [Google Scholar]
- [30].Ramón F., Hernández-Falcón F., Nguyen B., Bullock T.H. Slow wave sleep in crayfish. Proc Natl Acad Sci U S A. 2004;101:11857–11861. doi: 10.1073/pnas.0402015101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [31].Stephenson R., Lewis V. Behavioural evidence for a sleep-like state in a pulmonate mollusc, Lymnea stagnalis. J Exp Biol. 2011;214:747–756. doi: 10.1242/jeb.050591. [DOI] [PubMed] [Google Scholar]
- [32].Houck B.A. Temporal spacing in the activity patterns of three Hawaiian shallow-water octopods. The Nautilus. 1982;96:152–156. [Google Scholar]
- [33].Brown E.R., Piscopo S., De Stefano R., Giuditta A. Brain and behavioural evidence for rest-activity cycles in Octopus vulgaris. Behav Brain Res. 2006;172:355–359. doi: 10.1016/j.bbr.2006.05.009. [DOI] [PubMed] [Google Scholar]
- [34].Karmanova I.G., Lazarov S.G. Stages of sleep evolution (facts and hypotheses) Waking Sleeping. 1979;3:137–147. [PubMed] [Google Scholar]
- [35].Karmanova I.G. Evolution of Sleep: Stages of the Formation of the ‘Wakefulness-Sleep’ Cycle in Vertebrates. Basel: Karger; 1982. [Google Scholar]
- [36].Eiland M.M., Lyamin O.I., Siegel J.M. State-related discharge of neurons in the brainstem of freely moving box turtles, Terrapene Carolina major. Arch Ital Biol. 2001;39:23–36. [PMC free article] [PubMed] [Google Scholar]
- [37].Nicol S.C., Andersen N.A., Phillips N.H., Berger R.J. The echidna manifests typical characteristics of rapid eye movement sleep. Neurosci Lett. 2000;283:49–52. doi: 10.1016/S0304-3940(00)00922-8. [DOI] [PubMed] [Google Scholar]
- [38].Siegel J.M., Manger P.R., Nienhuis R., Fahringer H.M., Pettigrew J.D. The echidna combines REM and non-REM aspects in a single sleep state: implications for the evolution or sleep. J Neurosci. 1996;16:3500–3506. doi: 10.1523/JNEUROSCI.16-10-03500.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [39].Siegel J.M., Manger P.R., Nienhuis R., Fahringer H.M., Shalita T., Pettigrew J.D. Sleep in the platypus. Neuroscience. 1999;91:391–400. doi: 10.1016/S0306-4522(98)00588-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [40].Siegel J.M., Manger P.R., Nienhuis R., Fahringer H.M., Pettigrew J.D. Monotremes and the evolution of rapid eye movement sleep. Phil Trans Roy Soc London (B) 1998;353:1147–1157. doi: 10.1098/rstb.1998.0272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [41].Ayala-Guerrero F., Mexicano G. Sleep and wakefulness in the green iguanid lizard. Comp Biochem Physiol (A) 2008;151:305–312. doi: 10.1016/j.cbpb.2008.07.014. [DOI] [PubMed] [Google Scholar]
- [42].Flanagan W.F., Jr, Knight C.P., Hartse K.M., Rechtschaffen A. Sleep and wakefulness in chelonian reptiles. I. the box turtle, Terrapene carolina. Arch Ital Biol. 1974;112:227–252. [PubMed] [Google Scholar]
- [43].Gaztelu J.M., García-Austt E., Bullock T.H. Electrocorticograms of hippocampal and dorsal cortex of two reptiles: comparison with possible mammalian homologs. Brain Behav Evol. 1991;37:144–160. doi: 10.1159/000114354. [DOI] [PubMed] [Google Scholar]
- [44].Kavanau J.L. REM and NREM sleep as natural accompaniments of the evolution of warm-bloodedness. Neurosci Biobehav Rev. 2002;26:889–906. doi: 10.1016/S0149-7634(02)00088-X. [DOI] [PubMed] [Google Scholar]
- [45].Villablanca J. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J Sleep Res. 2004;13:179–208. doi: 10.1111/j.1365-2869.2004.00412.x. [DOI] [PubMed] [Google Scholar]
- [46].Moruzzi G., Magoun H.W. Brainstem reticular formation and activation of the EEG. Electroenceph Clin Neurophysiol. 1949;1:455–473. [PubMed] [Google Scholar]
- [47].Shaffery J.P., Roffwarg H. The ontogenetic hypothesis of rapid eye movement sleep function revisited. In: Frank M.G., editor. Current Advances in Sleep Biology. Hauppauga (NY): Nova Science; 2009. pp. 177–216. [Google Scholar]
- [48].Duntley S.P., Morrissey M.J. Sleep in the cuttlefish. Ann Neurol. 2004;56:S68. doi: 10.1002/ana.20150. [DOI] [Google Scholar]
- [49].Meisel DV, Byrne RA, Mather JA, Kuba M. Behavioral sleep in Octopus vulgaris. Vie et Milieu 2011, in press.
- [50].Hanlon R.T., Messenger J.B. Cephalopod Behaviour. Cambridge (UK): Cambridge Univ Press; 1996. [Google Scholar]
- [51].Fuller P.M., Saper C.B., Lu J. The pontine REM switch: past and present. J Physiol (London) 2007;584:735–741. doi: 10.1113/jphysiol.2007.140160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [52].Bullock T.H. Ongoing compound field potentials from octopus brain are labile and vertebrate-like. Electroencephalogr Clin Neurophysiol. 1984;57:473–483. doi: 10.1016/0013-4694(84)90077-4. [DOI] [PubMed] [Google Scholar]
- [53].Kaiser W., Stein-Kaiser J. Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect. Nature. 1983;301:707–709. doi: 10.1038/301707a0. [DOI] [PubMed] [Google Scholar]
- [54].Tobler I., Neuner-Jehle M. 24-h variation of vigilance in the cockroach Blaberus giganteus. J Sleep Res. 1992;1:231–239. doi: 10.1111/j.1365-2869.1992.tb00044.x. [DOI] [PubMed] [Google Scholar]
- [55].Schuppe H., Burrows M. Arousal shifts in quiescent locusts. J Exp Biol. 1998;201:1719–1728. doi: 10.1242/jeb.201.11.1719. [DOI] [PubMed] [Google Scholar]
- [56].Van Swinderen B., Nitz D.A., Greenspan R.J. Uncoupling of brain activity from movement defines arousal states in Drosophila. Curr Biol. 2004;14:81–87. [PubMed] [Google Scholar]
- [57].Tobler I., Stalder J. Rest in the scorpion — a sleep-like state? J Comp Physiol A. 1988;163:227–235. doi: 10.1007/BF00612431. [DOI] [Google Scholar]
- [58].Koopowitz H., Ewer D.W. Observations on the myo-neural physiology of a polyclad flatworm: inhibitory systems. J Exp Biol. 1970;53:1–8. doi: 10.1242/jeb.53.1.1. [DOI] [PubMed] [Google Scholar]
- [59].Koopowitz H. Activity and habituation in the brain of the polyclad flatworm Freemania litoricola. J Exp Biol. 1975;62:455–467. doi: 10.1242/jeb.62.2.455. [DOI] [PubMed] [Google Scholar]
- [60].Valatx J.L. Ontogeny and physiology confirm the dual nature of sleep states. Arch Ital Biol. 2004;142:569–580. [PubMed] [Google Scholar]
- [61].Rosato-Siri M.D., Zoccolan D., Furian F., Ballerini L. Interneurone bursts are spontaneously associated with muscle contractions only during early phases of mouse spinal network development: a study in organotypic cultures. Eur J Neurosci. 2004;20:2697–2710. doi: 10.1111/j.1460-9568.2004.03740.x. [DOI] [PubMed] [Google Scholar]
- [62].Corner M.A., Crain S.M. The development of spontaneous bioelectric activity and strychnine sensitivity during maturation in cultures of embryonic chick and rodent central nervous tissues. Arch Int Pharmacodyn Ther. 1969;182:404–406. [PubMed] [Google Scholar]
- [63].Corner M.A., Crain S.M. Patterns of spontaneous bioelectric activity during maturation in cultures of fetal rodent medulla and spinal cord tissues. J Neurobiol. 1972;3:25–45. doi: 10.1002/neu.480030104. [DOI] [PubMed] [Google Scholar]
- [64].Takizawa N. Integral multiple interspike intervals of spontaneous activity in isolated medulla oblongata of the frog. Brain Res. 1981;212:466–469. doi: 10.1016/0006-8993(81)90479-0. [DOI] [PubMed] [Google Scholar]
- [65].Weiss P.A. Deplantation of fragments of the nervous system in amphibians: central reorganization and the formation of nerves. J Exp Zool. 1950;113:317–462. doi: 10.1002/jez.1401130208. [DOI] [Google Scholar]
- [66].Corner M.A. Localization of capacities for functional development in the neural plate of Xenopus laevis. J Comp Neurol. 1964;123:243–256. doi: 10.1002/cne.901230208. [DOI] [PubMed] [Google Scholar]
- [67].Steriade M. The K-complex: its slow (<1Hz) rhythmicity and relation to delta waves. Neurology. 1997;49:952–959. doi: 10.1212/wnl.49.4.952. [DOI] [PubMed] [Google Scholar]
- [68].Terzano M.G., Parrino L., Spaggiari M.C. The cyclic alternating pattern sequences in the dynamic organization of sleep. Electroencephalogr Clin Neurophysiol. 1988;69:437–447. doi: 10.1016/0013-4694(88)90066-1. [DOI] [PubMed] [Google Scholar]
- [69].McCormick D.A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamo-cortical circuitry. Prog Neurobiol. 1992;39:337–388. doi: 10.1016/0301-0082(92)90012-4. [DOI] [PubMed] [Google Scholar]
- [70].Achermann P., Borbély A.A. Low-frequency (<1 Hz) oscillations in the human sleep-electroencephalogram. Neuroscience. 1997;81:213–222. doi: 10.1016/S0306-4522(97)00186-3. [DOI] [PubMed] [Google Scholar]
- [71].Olbrich E., Achermann P. Analysis of the temporal organization of sleep spindles in the human EEG using a phenomenological modeling approach. J Biol Phys. 2008;34:341–349. doi: 10.1007/s10867-008-9078-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [72].Baker R.E., Corner M.A., van Pelt Spontaneous neuronal discharge patterns in developing organotypic mega-co-cultures of neonatal rat cerebral cortex. Brain Res. 2006;1101:29–35. doi: 10.1016/j.brainres.2006.05.028. [DOI] [PubMed] [Google Scholar]
- [73].Moore A.R., Zhou W.L., Jakovcevski I., Zecevic N., Antic S.D. Sponta neous electrical activity in the human fetal cortex in vitro. J Neurosci. 2011;31:2391–2398. doi: 10.1523/JNEUROSCI.3886-10.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [74].Wagenaar D.A., Pine J., Potter S.M. An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC (Bio-Med Central) Neurosci. 2006;7/11:1–21. doi: 10.1186/1471-2202-7-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [75].Szentagothai J. Specificity versus (quasi-) randomness revisited. Acta Morphol Hung. 1990;38:159–167. [PubMed] [Google Scholar]
- [76].Szentágothai J., Arbib M.A. Conceptual models of neural organization. Neurosci Res Program Bull. 1974;12:305–510. [PubMed] [Google Scholar]
- [77].Lopes da Silva F.H. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol. 1991;79:81–93. doi: 10.1016/0013-4694(91)90044-5. [DOI] [PubMed] [Google Scholar]
- [78].Frolich F., McCormick D.A. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;15:129–143. doi: 10.1016/j.neuron.2010.06.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [79].Anastassiou C.A., Perin R., Markram H., Koch C. Ephaptic coupling of cortical neurons. Nat Neurosci. 2011;14:217–223. doi: 10.1038/nn.2727. [DOI] [PubMed] [Google Scholar]
- [80].Amzica F., Steriade M. Disconnection of synaptic linkages disrupts synchronization of a slow rhythm. J Neurosci. 1995;15:4658–4677. doi: 10.1523/JNEUROSCI.15-06-04658.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [81].Sporns O., Gally J.A., Reeke G.N., Edelman G.M. Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci U S A. 1989;86:7265–7269. doi: 10.1073/pnas.86.18.7265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [82].Izhikevich E.M., Gally J.A., Edelman G.M. Spike-timing dynamics of neuronal groups. Cereb Cortex. 2004;14:933–944. doi: 10.1093/cercor/bhh053. [DOI] [PubMed] [Google Scholar]
- [83].Ferri R., Rundo F., Bruni O., Terzano M.G., Stam C.J. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol. 2007;118:449–456. doi: 10.1016/j.clinph.2006.10.021. [DOI] [PubMed] [Google Scholar]
- [84].Corner M.A., Ramakers G.J.A. Spontaneous firing as an epigenetic factor in brain development. Devel Brain Res. 1992;65:57–64. doi: 10.1016/0165-3806(92)90008-K. [DOI] [PubMed] [Google Scholar]
- [85].Rattenborg N.C. Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Res Bull. 2006;69:20–29. doi: 10.1016/j.brainresbull.2005.11.002. [DOI] [PubMed] [Google Scholar]
- [86].Velluti J.C., Russo R.E., Simini F., García-Austt E. Electroencephalogram in vitro and cortical transmembrane potentials in the turtle Chrysemys d’orbigny. Brain Behav Evol. 1991;38:7–19. doi: 10.1159/000114376. [DOI] [PubMed] [Google Scholar]
- [87].Corner M.A., Bot A.P.C. Electrical activity in the isolated forebrain of the chick embryo. Brain Res. 1969;12:473–476. doi: 10.1016/0006-8993(69)90017-1. [DOI] [PubMed] [Google Scholar]
- [88].Massimini M., Huber R., Ferrarelli F., Hill S., Tononi G. The sleep slow oscillation as a travelling wave. J Neurosci. 2004;24:6862–6870. doi: 10.1523/JNEUROSCI.1318-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [89].Klink R., Alonso A. Muscarinic modulation of the oscillatory and repetitive firing properties on entorhinal cortex layer II neurons. J Neurophysiol. 1997;77:1813–1828. doi: 10.1152/jn.1997.77.4.1813. [DOI] [PubMed] [Google Scholar]
- [90].Bazhenov M., Timofeev I., Steriade M., Sejnowski T.J. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci. 2002;22:8691–8704. doi: 10.1523/JNEUROSCI.22-19-08691.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [91].Kimura F., Fukuda M., Tsumoto T. Acetylcholine suppresses the spread of excitation in the visual cortex revealed by optical recording. Eur J Neurosci. 1999;11:3597–3609. doi: 10.1046/j.1460-9568.1999.00779.x. [DOI] [PubMed] [Google Scholar]
- [92].Giacomo L.M., Hasselmo M.E. Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Mol Neurobiol. 2007;36:184–200. doi: 10.1007/s12035-007-0032-z. [DOI] [PubMed] [Google Scholar]
- [93].Vyazovsky V.V., Faraguna U., Cirelli C., Tononi G. Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation. J Neurophysiol. 2009;101:1921–1931. doi: 10.1152/jn.91157.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [94].Tateno T., Jimbo Y., Robinson H.P.C. Spatio-temporal cholinergic modulation in cultured networks of rat cortical neurons: spontaneous activity. Neuroscience. 2005;134:425–437. doi: 10.1016/j.neuroscience.2005.04.049. [DOI] [PubMed] [Google Scholar]
- [95].Blankenship A.G., Feller M.B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci. 2010;11:18–29. doi: 10.1038/nrn2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [96].O’Donovan M.J. The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr Opin Neurobiol. 1999;9:94–104. doi: 10.1016/S0959-4388(99)80012-9. [DOI] [PubMed] [Google Scholar]
- [97].Gritsun T.A., Le Feber J., Stegenga J., Rutten W.L.C. Network bursts in cortical cultures are best simulated using pacemaker neurons and adaptive synapses. Biol Cybern. 2010;102:293–310. doi: 10.1007/s00422-010-0366-x. [DOI] [PubMed] [Google Scholar]
- [98].Beggs J.M., Plenz D. Neuronal avalanches in neocortical circuits. J Neurosci. 2003;23:11167–11177. doi: 10.1523/JNEUROSCI.23-35-11167.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [99].Pasquale V., Massobrio P., Bologna L.L., Chiappalone M., Martinoia S. Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience. 2008;163:1354–1369. doi: 10.1016/j.neuroscience.2008.03.050. [DOI] [PubMed] [Google Scholar]
- [100].Mazzoni A., Broccard F.D., Garcia-Perez E., Bonifazi P., Ruaro M.E., Torre V. On the dynamics of the spontaneous activity in neuronal networks. PLoS One. 2007;2:e439. doi: 10.1371/journal.pone.0000439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [101].Ham M.I., Bettencourt L.M., McDaniel F.D., Gross G.W. Spontaneous coordinated activity in cultured networks: analysis of multiple ignition sites, primary circuits, and burst phase delay distributions. J Comput Neurosci. 2008;24:346–357. doi: 10.1007/s10827-007-0059-1. [DOI] [PubMed] [Google Scholar]
- [102].Bosman L., Lodder J.C., van Ooyen A., Brussaard A.B. Role of synaptic inhibition in spatiotemporal patterning of cortical activity. Prog Brain Res. 2005;147:201–204. doi: 10.1016/S0079-6123(04)47015-0. [DOI] [PubMed] [Google Scholar]
- [103].McLean H.A., Caillard O., Khazipov R., Ben-Ari Y., Gaiarsa J.L. Spontaneous release of GABA activates GABA-B receptors and controls network activity in the neonatal rat hippocampus. J Neurophysiol. 1996;76:1036–1046. doi: 10.1152/jn.1996.76.2.1036. [DOI] [PubMed] [Google Scholar]
- [104].Richter D., Luhmann H.J., Kilb W. Intrinsic activation of GABAa receptors suppresses epileptiform activity in the cerebral cortex of immature mice. Epilepsia. 2010;51:1483–1492. doi: 10.1111/j.1528-1167.2010.02591.x. [DOI] [PubMed] [Google Scholar]
- [105].Yvon C., Rubli R., Streit J. Patterns of spontaneous activity in unstructured and minimally structured spinal networks in culture. Exp Brain Res. 2005;165:139–151. doi: 10.1007/s00221-005-2286-x. [DOI] [PubMed] [Google Scholar]
- [106].Gao F., Wu S.M. Characterization of spontaneous inhibitory synaptic currents in salamander retinal ganglion cells. J Neurophysiol. 1998;80:1752–1764. doi: 10.1152/jn.1998.80.4.1752. [DOI] [PubMed] [Google Scholar]
- [107].Tolb A., Lyakhov V., Marom S. Interaction between duration of activity and time course of recovery from slow inactivation in mam malian brain Na+ channels. J Neurosci. 1999;18:1893–1903. doi: 10.1523/JNEUROSCI.18-05-01893.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [108].Eytan D., Marom S. Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurophysiol. 2006;26:8465–8476. doi: 10.1523/JNEUROSCI.1627-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [109].Compte A., Sanchez-Vives M.V., McCormick D.A., Wang X.J. Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagation in a cortical network model. J Neurophysiol. 2003;89:2707–2725. doi: 10.1152/jn.00845.2002. [DOI] [PubMed] [Google Scholar]
- [110].Fedirchuk B., Wenner P., Whelan P.J., Ho S., Tabak J., O’Donovan M.J. Spontaneous network activity transiently depresses synaptic transmission in the embryonic chick spinal cord. J Neurosci. 1999;19:2102–2112. doi: 10.1523/JNEUROSCI.19-06-02102.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [111].Van Pelt J., Corner M.A., Wolters P. Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multielectrode arrays. Neurosci Lett. 2004;361:86–89. doi: 10.1016/j.neulet.2003.12.062. [DOI] [PubMed] [Google Scholar]
- [112].Segal M.M., Furshpan E.J. Epileptiform activity in microcultures containing small numbers of hippocampal neurons. J Neurophysiol. 1990;64:1390–1399. doi: 10.1152/jn.1990.64.5.1390. [DOI] [PubMed] [Google Scholar]
- [113].Tabak J., O’Donovan M.J., Rinzel J. Differential control of active and silent phases in relaxation models of neuronal rhythms. J Comput Neurosci. 2006;21:307–328. doi: 10.1007/s10827-006-8862-7. [DOI] [PubMed] [Google Scholar]
- [114].Brodsky V.Y. Direct cell-cell communication: a new approach derived from recent data on the nature and self-organisation of ultradian (circahoralian) intracellular rhythms. Biol Rev Camb Philos Soc. 2006;81:143–162. doi: 10.1017/S1464793105006937. [DOI] [PubMed] [Google Scholar]
- [115].Wierenga C.J., Ibata K., Turrigiano G.G. Postsynaptic expression of homeostatic plasticity at neocortical synapses. J Neurosci. 2005;25:2895–2905. doi: 10.1523/JNEUROSCI.5217-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [116].van Ooyen A., van Pelt J. Complex periodic behaviour in a neural network model with activity-dependent neurite outgrowth. J Theor Biol. 1996;179:229–242. doi: 10.1006/jtbi.1996.0063. [DOI] [PubMed] [Google Scholar]
- [117].Fehmi L.G., Bullock T.H. Discrimination among temporal patterns of stimulation in a computer model of a coelenterate nerve net. Kybernetic. 1976;3:240–249. doi: 10.1007/BF00288554. [DOI] [PubMed] [Google Scholar]
- [118].Rector D.M., Schei J.L., Van Dongen H.P., Belenky G., Krueger J.M. Physiological markers of local sleep. Eur J Neurosci. 2009;29:1771–1778. doi: 10.1111/j.1460-9568.2009.06717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [119].Jones B.E. Paradoxical REM-sleep promoting and permitting neuronal networks. Arch Ital Biol. 2004;142:379–396. [PubMed] [Google Scholar]
- [120].Krueger J.M., Wisor J.P. Local use-dependent sleep. Curr Topics Med Chem. 2011;11:2390–2391. doi: 10.2174/156802611797470295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [121].Krueger J.M., Tononi G. Local use-dependent sleep; synthesis of the new paradigm. Curr Topics Med Chem. 2011;11:2390–2492. doi: 10.2174/156802611797470330. [DOI] [PMC free article] [PubMed] [Google Scholar]