Structures and mechanisms in flavivirus fusion (original) (raw)

Publisher Summary

This chapter focuses on the work carried out with tick-borne encephalitis (TBE) virus, the structurally best characterized of the flaviviruses. The data is related to those obtained with other flaviviruses, which are assumed to have a conserved structural organization, and compare the characteristics of flavivirus fusion to those of other enveloped viruses. Fusion proteins from several different virus families, including Orthomyxoviridae, Paramyxoviridae, Retroviridae, and Filoviridae have been shown to exhibit striking structural similarities; they all use a common mechanism for inducing membrane fusion, and the same general model applies to all of these cases. The flavivirus genome is a positive-stranded RNA molecule consisting of a single, long open reading frame of more than 10,000 nucleotides flanked by noncoding regions at the 5′ and 3′ ends. The fusion properties of flaviviruses have been investigated using several different assay systems, including virus-induced cell–cell fusion and virus–liposome fusion. All of these studies indicate that flaviviruses require an acidic pH for fusion, consistent with their proposed mode of entry.

References

  1. Aberle J.H, Aberle S.W, Allison S.L, Stiasny K, Ecker M, Mandl C.W, Berger R, Heinz F.X. A DNA immunization model study with constructs expressing the same protective viral antigen in different physical forms. J. Immunol. 1999;163:6756–6761. [PubMed] [Google Scholar]
  2. Aihara S, Rao C.M, Yu Y.X, Lee T, Watanabe K, Komiya T, Sumiyoshi H, Hashimoto H, Nomoto A. Identification of mutations that occurred on the genome of Japanese encephalitis virus during the attenuation process. Virus Genes. 1991;5:95–109. doi: 10.1007/BF00571925. [DOI] [PubMed] [Google Scholar]
  3. Allison S.L, Scholich J, Stasny K, Mandl C.W, Heinz F.X. 2000. An internal fusion peptide in the flavivirus envelope protein E. (submitted) [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allison S.L, Schalich J, Stiasny K, Mandl C.W, Kunz C, Heinz F.X. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 1995;69:695–700. doi: 10.1128/jvi.69.2.695-700.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allison S.L, Stadler K, Mandl C.W, Kunz C, Heinz F.X. Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J. Virol. 1995;69:5816–5820. doi: 10.1128/jvi.69.9.5816-5820.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Allison S.L, Stiasny K, Stadler K, Mandl C.W, Heinz F.X. Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. J. Virol. 1999;73:5605–5612. doi: 10.1128/jvi.73.7.5605-5612.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baker D, Agard D.A. Influenza hemagglutinin: Kinetic control of protein function. Structure. 1994;2:907–910. doi: 10.1016/s0969-2126(94)00091-3. [DOI] [PubMed] [Google Scholar]
  8. Baker K.A, Dutch R.E, Lamb R.A, Jardetzky T.S. Structural basis for paramyxovirus-mediated membrane fusion. Mol. Cell. 1999;3:309–319. doi: 10.1016/s1097-2765(00)80458-x. [DOI] [PubMed] [Google Scholar]
  9. Blok J, Samuel S, Gibbs A.J, Vitarana U.T. Variation of the nucleotide and encoded amino acid sequences of the envelope gene from eight dengue-2 viruses. Arch. Virol. 1989;105:39–53. doi: 10.1007/BF01311115. [DOI] [PubMed] [Google Scholar]
  10. Brandriss M.W, Schlesinger J.J. Antibody-mediated infection of P388D1 cells with 17D yellow fever virus: Effects of chloroquine and cytochalasin B. J. Gen. Virol. 1984;65:791–794. doi: 10.1099/0022-1317-65-4-791. [DOI] [PubMed] [Google Scholar]
  11. Bron R, Wahlberg J.M, Garoff H, Wilschut J. Membrane fusion of Semliki Forest virus in a model system: Correlation between fusion kinetics and structural changes in the envelope glycoprotein. EMBO J. 1993;12:693–701. doi: 10.1002/j.1460-2075.1993.tb05703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bruss V, Ganem D. Mutational analysis of hepatitis B surface antigen particle assembly and secretion. J. Virol. 1991;65:3813–3820. doi: 10.1128/jvi.65.7.3813-3820.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bullough P.A, Hughson F.M, Skehel J.J, Wiley D.C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994;371:37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
  14. Caffrey M, Cai M, Kaufman J, Stahl S.J, Wingfield P.T, Covell D.G, Gronenborn A.M, Clore G.M. Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J. 1998;17:4572–4584. doi: 10.1093/emboj/17.16.4572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Carr C.M, Chaudhry C, Kim P.S. Vol. 94. 1997. Influenza hemagglutinin is spring-loaded by a metastable native conformation; pp. 14306–14313. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Carr C.M, Kim P.S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993;73:823–832. doi: 10.1016/0092-8674(93)90260-w. [DOI] [PubMed] [Google Scholar]
  17. Cecilia D, Gould E.A. Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology. 1991;181:70–77. doi: 10.1016/0042-6822(91)90471-m. [DOI] [PubMed] [Google Scholar]
  18. Chan D.C, Fass D, Berger J.M, Kim P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell. 1997;89:263–273. doi: 10.1016/s0092-8674(00)80205-6. [DOI] [PubMed] [Google Scholar]
  19. Chen J, Lee K.H, Steinhauer D.A, Stevens D.J, Skehel J.J, Wiley D.C. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell. 1998;95:409–417. doi: 10.1016/s0092-8674(00)81771-7. [DOI] [PubMed] [Google Scholar]
  20. Chen Y, Maguire T, Hileman R.E, Fromm J.R, Esko J.D, Linhardt R.J, Marks R.M. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med. 1997;3:866–871. doi: 10.1038/nm0897-866. [DOI] [PubMed] [Google Scholar]
  21. Cheng R.H, Kuhn R.J, Olson N.H, Rossmann M.G, Choi H.K, Smith T.J, Baker T.S. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell. 1995;80:621–630. doi: 10.1016/0092-8674(95)90516-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Colombage G, Hall R, Pavy M, Lobigs M. DNA-based and alphavirus-vectored immunisation with prM and E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valley encephalitis virus. Virology. 1998;250:151–163. doi: 10.1006/viro.1998.9357. [DOI] [PubMed] [Google Scholar]
  23. Corver J, Ortiz A, Allison S.L, Schalich J, Heinz F.X, Wilschut J. Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology. 2000;269:37–46. doi: 10.1006/viro.1999.0172. [DOI] [PubMed] [Google Scholar]
  24. Danieli T, Pelletier S.L, Henis Y.I, White J.M. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J. Cell. Biol. 1996;133:559–569. doi: 10.1083/jcb.133.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. de Lima M.C, Ramalho-Santos J, Flasher D, Slepushkin V.A, Nir S, Duzgunes N. Target cell membrane sialic acid modulates both binding and fusion activity of influenza virus. Biochim. Biophys. Acta. 1995;1236:323–330. doi: 10.1016/0005-2736(95)00067-d. [DOI] [PubMed] [Google Scholar]
  26. Desprès P, Frenkiel M.P, Deubel V. Differences between cell membrane fusion activities of two dengue type-1 isolates reflect modifications of viral structure. Virology. 1993;196:209–219. doi: 10.1006/viro.1993.1469. [DOI] [PubMed] [Google Scholar]
  27. Dimmock N.J. Update on the neutralisation of animal viruses. Rev. Med. Virol. 1995;5:165–179. [Google Scholar]
  28. Durrer P, Gaudin Y, Ruigrok R.W, Graf R, Brunner J. Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J. Biol. Chem. 1995;270:17575–17581. doi: 10.1074/jbc.270.29.17575. [DOI] [PubMed] [Google Scholar]
  29. Ellens H, Bentz J, Mason D, Zhang F, White J.M. Fusion of influenza hemagglutinin-expressing fibroblasts with glycoprorin-bearing liposomes: role of hemagglutinin surface density. Biochemistry. 1990;29:9697–9707. doi: 10.1021/bi00493a027. [DOI] [PubMed] [Google Scholar]
  30. Fass D, Harrison S.C, Kim P.S. Retrovirus envelope domain at 1.7 angstrom resolution. Nat. Struct. Biol. 1996;3:465–469. doi: 10.1038/nsb0596-465. [DOI] [PubMed] [Google Scholar]
  31. Fonseca B.A, Pincus S, Shope R.E, Paoletti E, Mason P.W. Recombinant vaccinia viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. Vaccine. 1994;12:279–285. doi: 10.1016/0264-410x(94)90206-2. [published erratum appears in Vaccine 1994 Apr;12(5):480] [DOI] [PubMed] [Google Scholar]
  32. Fuller S.D. The T=4 envelope of Sindbis virus is organized by interactions with a complementary T=3 capsid. Cell. 1987;48:923–934. doi: 10.1016/0092-8674(87)90701-x. [DOI] [PubMed] [Google Scholar]
  33. Fuller S.D, Berriman J.A, Butcher S.J, Gowen B.E. Low pH induces swiveling of the glycoprotein heterodimers in the Semliki Forest virus spike complex. Cell. 1995;81:715–725. doi: 10.1016/0092-8674(95)90533-2. [DOI] [PubMed] [Google Scholar]
  34. Garoff H, Hewson R, Opstelten D.E. Virus maturation by budding. Microbial. Mol. Biol. Rev. 1998;62:1171–1190. doi: 10.1128/mmbr.62.4.1171-1190.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Gaudin Y, Ruigrok R.W, Brunner J. Low-pH induced conformational changes in viral fusion proteins: Implications for the fusion mechanism. J. Gen. Virol. 1995;76:1541–1556. doi: 10.1099/0022-1317-76-7-1541. [DOI] [PubMed] [Google Scholar]
  36. Gollins S.W, Porterfield J.S. Flavivirus infection enhancement in macrophages: radioactive and biological studies on the effect of antibody on viral fate. J. Gen. Virol. 1984;65:1261–1272. doi: 10.1099/0022-1317-65-8-1261. [DOI] [PubMed] [Google Scholar]
  37. Gollins S.W, Porterfield J.S. Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry. J. Gen. Virol. 1985;66:1969–1982. doi: 10.1099/0022-1317-66-9-1969. [DOI] [PubMed] [Google Scholar]
  38. Gollins S.W, Porterfield J.S. A new mechanism for the neutralization of enveloped viruses by antiviral antibody. Nature. 1986;321:244–246. doi: 10.1038/321244a0. [DOI] [PubMed] [Google Scholar]
  39. Gollins S.W, Porterfield J.S. pH-dependent fusion between the flavivirus West Nile and liposomal model membranes. J. Gen. Virol. 1986;67:157–166. doi: 10.1099/0022-1317-67-1-157. [DOI] [PubMed] [Google Scholar]
  40. Gollins S.W, Porterfield J.S. The uncoating and infectivity of the flavivirus West Nile on interaction with cells: Effects of pH and ammonium chloride. J. Gen. Virol. 1986;67:1941–1950. doi: 10.1099/0022-1317-67-9-1941. [DOI] [PubMed] [Google Scholar]
  41. Guirakhoo F, Bolin R.A, Roehrig J.T. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology. 1992;191:921–931. doi: 10.1016/0042-6822(92)90267-S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Guirakhoo F, Heinz F.X, Kunz C. Epitope model of tick-borne encephalitis virus envelope glycoprotein E: Analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology. 1989;169:90–99. doi: 10.1016/0042-6822(89)90044-5. [DOI] [PubMed] [Google Scholar]
  43. Guirakhoo F, Heinz F.X, Mandl C.W, Holzmann H, Kunz C. Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tickborne encephalitis virions. J. Gen. Virol. 1991;72:1323–1329. doi: 10.1099/0022-1317-72-6-1323. [DOI] [PubMed] [Google Scholar]
  44. Guirakhoo F, Hunt A.R, Lewis J.G, Roehrig J.T. Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology. 1993;194:219–223. doi: 10.1006/viro.1993.1252. [DOI] [PubMed] [Google Scholar]
  45. Hay A.J. The action of adamantanamines against influenza A viruses: Inhibition of the M2 ion channel protein. Semin. Virol. 1992;3:21–30. [Google Scholar]
  46. Haywood A.M, Boyer B.P. Time and temperature dependence of influenza virus membrane fusion at neutral pH. J. Gen. Virol. 1986;67:2813–2817. doi: 10.1099/0022-1317-67-12-2813. [DOI] [PubMed] [Google Scholar]
  47. Heinz F.X, Allison S.L, Stiasny K, Schalich J, Holzmann H, Mandl C.W, Kunz C. Recombinant and virion-derived soluble and particulate immunogens for vaccination against tick-borne encephalitis. Vaccine. 1995;13:1636–1642. doi: 10.1016/0264-410x(95)00133-l. [DOI] [PubMed] [Google Scholar]
  48. Heinz F.X, Kunz C. Chemical crosslinking of tick-borne encephalitis virus and its subunits. J. Gen. Virol. 1980;46:301–309. doi: 10.1099/0022-1317-46-2-301. [DOI] [PubMed] [Google Scholar]
  49. Heinz F.X, Mandl C.W, Holzmann H, Kunz C, Harris B.A, Rey F, Harrison S.C. The flavivirus envelope protein E: Isolation of a soluble form from tickborne encephalitis virus and its crystallization. J. Virol. 1991;65:5579–5583. doi: 10.1128/jvi.65.10.5579-5583.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Heinz F.X, Stiasny K, Püschner-Auer G, Holzmann H, Allison S.L, Mandl C.W, Kunz C. Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology. 1994;198:109–117. doi: 10.1006/viro.1994.1013. [DOI] [PubMed] [Google Scholar]
  51. Hernandez L.D, Hoffman L.R, Wolfsberg T.G, White J.M. Virus-cell and cell-cell fusion. Annu. Rev. Cell. Dev. Biol. 1996;12:627–661. doi: 10.1146/annurev.cellbio.12.1.627. [DOI] [PubMed] [Google Scholar]
  52. Hernandez L.D, White J.M. Mutational analysis of the candidate internal fusion peptide of the avian leukosis and sarcoma virus subgroup A envelope glycoprotein. J. Virol. 1998;72:3259–3267. doi: 10.1128/jvi.72.4.3259-3267.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hoekstra D, Klappe K, deBoer T, Wilschut J. Characterization of the fusogenic properties of Sendai virus: Kinetics of fusion with erythrocyte membranes. Biochemistry. 1985;24:4739–4745. doi: 10.1021/bi00339a005. [DOI] [PubMed] [Google Scholar]
  54. Holzmann H, Mandl C.W, Guirakhoo F, Heinz F.X, Kunz C. Characterization of antigenic variants of tick-borne encephalitis virus selected with neutralizing monoclonal antibodies. J. Gen. Virol. 1989;70:219–222. doi: 10.1099/0022-1317-70-1-219. [DOI] [PubMed] [Google Scholar]
  55. Hughson F.M. Enveloped viruses: A common mode of membrane fusion? Curr. Biol. 1997;7:R565–R569. doi: 10.1016/s0960-9822(06)00283-1. [DOI] [PubMed] [Google Scholar]
  56. Hughson F.M. Structure snared at last. Curr. Biol. 1999;9:R49–R52. doi: 10.1016/s0960-9822(99)80008-6. [DOI] [PubMed] [Google Scholar]
  57. Johnson A.J, Guirakhoo F, Roehrig J.T. The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology. 1994;203:241–249. doi: 10.1006/viro.1994.1481. [DOI] [PubMed] [Google Scholar]
  58. Justman J, Klimjack M.R, Kielian M. Role of spike protein conformational changes in fusion of Semliki Forest virus. J. Virol. 1993;67:7597–7607. doi: 10.1128/jvi.67.12.7597-7607.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Kielian M. Membrane fusion and the alphavirus life cycle. Adv. Virus Res. 1995;45:113–151. doi: 10.1016/s0065-3527(08)60059-7. [DOI] [PubMed] [Google Scholar]
  60. Kimura T, Gollins S.W, Porterfield J.S. The effect of pH on the early interaction of West Nile virus with P388D1 cells. J. Gen. Virol. 1986;67:2423–2433. doi: 10.1099/0022-1317-67-11-2423. [DOI] [PubMed] [Google Scholar]
  61. Kimura T, Ohyama A. Association between the pH-dependent conformational change of West Nile flavivirus E protein and virus-mediated membrane fusion. J. Gen. Virol. 1988;69:1247–1254. doi: 10.1099/0022-1317-69-6-1247. [DOI] [PubMed] [Google Scholar]
  62. Klenk H.D, Garten W. Activation cleavage of viral spike proteins. In: Wimmer E, editor. Cellular Receptors for Animal Viruses. Cold Spring Harbor Laboratory Press; 1994. pp. 241–280. [Google Scholar]
  63. Klimjack M.R, Jeffrey S, Kielian M. Membrane and protein interactions of a soluble form of the Semliki Forest virus fusion protein. J. Virol. 1994;68:6940–6946. doi: 10.1128/jvi.68.11.6940-6946.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Kobe B, Center R.J, Kemp B.E, Poumbourios P. Vol. 96. 1999. Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins; pp. 4319–4324. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Konishi E, Kurane I, Mason P.W, Shope R.E, Ennis F.A. Poxvirusbased Japanese encephalitis vaccine candidates induce JE virus-specific CD8+ cytotoxic T lymphocytes in mice. Virology. 1997;227:353–360. doi: 10.1006/viro.1996.8331. [DOI] [PubMed] [Google Scholar]
  66. Konishi E, Kurane I, Mason P.W, Shope R.E, Kanesa T.N, Smucny J.J, Hoke C.H.J, Ennis F.A. Induction of Japanese encephalitis virus-specific cytotoxic T lymphocytes in humans by poxvirus-based JE vaccine candidates. Vaccine. 1998;16:842–849. doi: 10.1016/s0264-410x(97)00265-x. [DOI] [PubMed] [Google Scholar]
  67. Konishi E, Pincus S, Fonseca B.A, Shope R.E, Paoletti E, Mason P.W. Comparison of protective immunity elicited by recombinant vaccinia viruses that synthesize E or NS1 of Japanese encephalitis virus. Virology. 1991;185:401–410. doi: 10.1016/0042-6822(91)90788-d. [DOI] [PubMed] [Google Scholar]
  68. Konishi E, Pincus S, Paoletti E, Laegreid W.W, Shope R.E, Mason P.W. A highly attenuated host range-restricted vaccinia virus strain, NYVAC, encoding the prM, E, and NS1 genes of Japanese encephalitis virus prevents JEV viremia in swine. Virology. 1992;190:454–458. doi: 10.1016/0042-6822(92)91233-k. [DOI] [PubMed] [Google Scholar]
  69. Konishi E, Pincus S, Paoletti E, Shope R.E, Burrage T, Mason P.W. Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology. 1992;188:714–720. doi: 10.1016/0042-6822(92)90526-u. [DOI] [PubMed] [Google Scholar]
  70. Konishi E, Pincus S, Paoletti E, Shope R.E, Mason P.W. Avipox virusvectored Japanese encephalitis virus vaccines: use as vaccine candidates in combination with purified subunit immunogens. Vaccine. 1994;12:633–638. doi: 10.1016/0264-410x(94)90269-0. [DOI] [PubMed] [Google Scholar]
  71. Konishi E, Win K.S, Kurane I, Mason P.W, Shope R.E, Ennis F.A. Particulate vaccine candidate for Japanese encephalitis induces long-lasting virusspecific memory T lymphocytes in mice. Vaccine. 1997;15:281–286. doi: 10.1016/s0264-410x(96)00180-6. [DOI] [PubMed] [Google Scholar]
  72. Konishi E, Yamaoka M, Khin S.W, Kurane I, Mason P.W. Induction of protective immunity against Japanese encephalitis in mice by immunization with a plasmid encoding Japanese encephalitis virus premembrane and envelope genes. J. Virol. 1998;72:4925–4930. doi: 10.1128/jvi.72.6.4925-4930.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. LaCasse R.A, Follis K.E, Trahey M, Scarborough J.D, Littman D.R, Nunberg J.H. Fusion-competent vaccines: Broad neutralization of primary isolates of HIV. Science. 1999;283:357–362. doi: 10.1126/science.283.5400.357. [DOI] [PubMed] [Google Scholar]
  74. Levy M.P, Kielian M. Mutagenesis of the putative fusion domain of the Semliki Forest virus spike protein. J. Virol. 1991;65:4292–4300. doi: 10.1128/jvi.65.8.4292-4300.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Lobigs M, Garoff H. Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62. J. Virol. 1990;64:1233–1240. doi: 10.1128/jvi.64.3.1233-1240.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Lu Y.E, Cassese T, Kielian M. The cholesterol requirement for Sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence. J. Virol. 1999;73:4272–4278. doi: 10.1128/jvi.73.5.4272-4278.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Malashkevich V.N, Chan D.C, Chutkowski C.T, Kim P.S. Vol. 95. 1998. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides; pp. 9134–9139. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Malashkevich V.N, Schneider B.J, McNally M.L, Milhollen M.A, Pang J.X, Kim P.S. Vol. 96. 1999. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-Angstrom resolution; pp. 2662–2667. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Mandl C.W, Holzmann H, Kunz C, Heinz F.X. Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses. Virology. 1993;194:173–184. doi: 10.1006/viro.1993.1247. [DOI] [PubMed] [Google Scholar]
  80. Mason E.W, Pincus S, Fournier M.J, Mason T.L, Shope R.E, Paoletti E. Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology. 1991;180:294–305. doi: 10.1016/0042-6822(91)90034-9. [DOI] [PubMed] [Google Scholar]
  81. McMinn P.C. The molecular basis of virulence of the encephalitogenic flaviviruses. J. Gen. Virol. 1997;78:2711–2722. doi: 10.1099/0022-1317-78-11-2711. [DOI] [PubMed] [Google Scholar]
  82. McMinn P.C, Lee E, Hartley S, Roehrig J.T, Dalgarno L, Weir R.C. Murray valley encephalitis virus envelope protein antigenic variants with altered hemagglutination properties and reduced neuroinvasiveness in mice. Virology. 1995;211:10–20. doi: 10.1006/viro.1995.1374. [DOI] [PubMed] [Google Scholar]
  83. McMinn P.C, Weir R.C, Dalgarno L. A mouse-attenuated envelope protein variant of Murray Valley encephalitis virus with altered fusion activity. J. Gen. Prol. 1996;77:2085–2088. doi: 10.1099/0022-1317-77-9-2085. [DOI] [PubMed] [Google Scholar]
  84. Moesby L, Corver J, Erukulla R.K, Bittman R, Wilschut J. Sphingolipids activate membrane fusion of Semliki Forest virus in a stereospecific manner. Biochemistry. 1995;34:10319–10324. doi: 10.1021/bi00033a001. [DOI] [PubMed] [Google Scholar]
  85. Monath T.P, Heinz F.X. Flaviviruses. In: Fields B.N, Knipe D.M, Howley P.M, Chanock R.M, Melnick J.L, Monath T.P, Roizman B, Straus S.E, editors. Fields Virology. 3rd edition. Lippincott-Raven; Philadelphia: 1996. pp. 961–1034. [Google Scholar]
  86. Munshi S, Liljas L, Cavarelli J, Bomu W, McKinney B, Reddy V, Johnson J.E. The 2.8 A structure of a T = 4 animal virus and its implications for membrane translocation of RNA. J. Mol. Biol. 1996;261:1–10. doi: 10.1006/jmbi.1996.0437. [DOI] [PubMed] [Google Scholar]
  87. Ni H, Watowich S.J, Barrett A.D.T. In: Factors in the Emergence of Arbovirus Diseases. Saluzzo J.F, Dodet B, editors. Elsevier; Paris: 1997. pp. 203–211. [Google Scholar]
  88. Nieva J.L, Bron R, Corver J, Wilschut J. Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J. 1994;13:2797–2804. doi: 10.1002/j.1460-2075.1994.tb06573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Nitayaphan S, Grant J.A, Chang G.J, Trent D.W. Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology. 1990;177:541–552. doi: 10.1016/0042-6822(90)90519-w. [DOI] [PubMed] [Google Scholar]
  90. Nowak T, Wengler G. Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology. 1987;156:127–137. doi: 10.1016/0042-6822(87)90443-0. [DOI] [PubMed] [Google Scholar]
  91. Pak C.C, Puri A, Blumenthal R. Conformational changes and fusion activity of vesicular stomatitis virus glycoprotein: [125I]Iodonaphthyl azide photolabeling studies in biological membranes. Biochemistry. 1997;36:8890–8896. doi: 10.1021/bi9702851. [DOI] [PubMed] [Google Scholar]
  92. Pal R, Barenholz Y, Wagner R.R. Pyrene phospholipid as a biological fluorescent probe for studying fusion of virus membrane with liposomes. Biochemistry. 1988;27:30–36. doi: 10.1021/bi00401a006. [DOI] [PubMed] [Google Scholar]
  93. Paredes A.M, Brown D.T, Rothnagel R, Chin W, Schoepp R.J, Johnston R.E, Prasad B.V. Vol. 90. 1993. Three-dimensional structure of a membrane-containing virus; pp. 9095–9099. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Phillpotts R.J, Venugopal K, Brooks T. Immunisation with DNA polynucleotides protects mice against lethal challenge with St. Louis encephalitis virus. Arch. Virol. 1996;141:743–749. doi: 10.1007/BF01718332. [DOI] [PubMed] [Google Scholar]
  95. Pincus S, Mason P.W, Konishi E, Fonseca B.A, Shope R.E, Rice C.M, Paoletti E. Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology. 1992;187:290–297. doi: 10.1016/0042-6822(92)90317-i. [DOI] [PubMed] [Google Scholar]
  96. Pugachev K.V, Mason P.W, Frey T.K. Sindbis vectors suppress secretion of subviral particles of Japanese encephalitis virus from mammalian cells infected with SIN-JEV recombinants. Virology. 1995;209:155–166. doi: 10.1006/viro.1995.1239. [DOI] [PubMed] [Google Scholar]
  97. Qiao H, Pelletier S.L, Hoffman L, Hacker J, Armstrong R.T, White J.M. Specific single or double proline substitutions in the “spring-loaded” coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity. J. Cell. Biol. 1998;141:1335–1347. doi: 10.1083/jcb.141.6.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Ramalho-Santos J, de Lima M.C. The influenza virus hemagglutinin: A model protein in the study of membrane fusion. Biochim. Biophys. Acta. 1998;1376:147–154. doi: 10.1016/s0304-4157(98)00002-1. [DOI] [PubMed] [Google Scholar]
  99. Randolph V.B, Stollar V. Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J. Gen. Virol. 1990;71:1845–1850. doi: 10.1099/0022-1317-71-8-1845. [DOI] [PubMed] [Google Scholar]
  100. Randolph V.B, Winkler G, Stollar V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology. 1990;174:450–458. doi: 10.1016/0042-6822(90)90099-d. [DOI] [PubMed] [Google Scholar]
  101. Rey F.A, Heinz F.X, Mandl C, Kunz C, Harrison S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature. 1995;375:291–298. doi: 10.1038/375291a0. [DOI] [PubMed] [Google Scholar]
  102. Rice C.M. Flaviviridae: The viruses and their replication. In: Fields B.N, Knipe D.M, Howley P.M, Chanock R.M, Melnick J.L, Monath T.P, Roizman B, Straus S.E, editors. Fields Virology. 3rd edition. Lippincott-Raven; Philadelphia: 1996. pp. 931–955. [Google Scholar]
  103. Roehrig J.T, Bolin R.A, Kelly R.G. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology. 1998;246:317–328. doi: 10.1006/viro.1998.9200. [DOI] [PubMed] [Google Scholar]
  104. Roehrig J.T, Hunt A.R, Johnson A.J, Hawkes R.A. Synthetic peptides derived from the deduced amino acid sequence of the E-glycoprotein of Murray Valley encephalitis virus elicit antiviral antibody. Virology. 1989;171:49–60. doi: 10.1016/0042-6822(89)90509-6. [DOI] [PubMed] [Google Scholar]
  105. Roehrig J.T, Johnson A.J, Hunt A.R, Bolin R.A, Chu M.C. Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology. 1990;177:668–675. doi: 10.1016/0042-6822(90)90532-v. [DOI] [PubMed] [Google Scholar]
  106. Rosenthal P.B, Zhang X, Formanowski F, Fitz W, Wong C.H, Meier E.H, Skehel J.J, Wiley D.C. Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature. 1998;396:92–96. doi: 10.1038/23974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Ruigrok R.W, Martin S.R, Wharton S.A, Skehel J.J, Bayley P.M, Wiley D.C. Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology. 1986;155:484–497. doi: 10.1016/0042-6822(86)90210-2. [DOI] [PubMed] [Google Scholar]
  108. Salminen A, Wahlberg J.M, Lobigs M, Liljestrom P, Garoff H. Membrane fusion process of Semliki Forest virus. II: Cleavage-dependent reorganization of the spike protein complex controls virus entry. J. Cell. Biol. 1992;116:349–357. doi: 10.1083/jcb.116.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Sato T, Takamura C, Yasuda A, Miyamoto M, Kamogawa K, Yasui K. High-level expression of the Japanese encephalitis virus E protein by recombinant vaccinia virus and enhancement of its extracellular release by the NS3 gene product. Virology. 1993;192:483–490. doi: 10.1006/viro.1993.1064. [DOI] [PubMed] [Google Scholar]
  110. Schalich J, Allison S.L, Stiasny K, Mandl C.W, Kunz C, Heinz F.X. Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J. Virol. 1996;70:4549–4557. doi: 10.1128/jvi.70.7.4549-4557.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Schmaljohn C, Vanderzanden L, Bray M, Custer D, Meyer B, Li D, Rossi C, Fuller D, Fuller J, Haynes J, Huggins J. Naked DNA vaccines expressing the prM and E genes of Russian spring summer encephalitis virus and Central European encephalitis virus protect mice from homologous and heterologous challenge. J. Virol. 1997;71:9563–9569. doi: 10.1128/jvi.71.12.9563-9569.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Shapiro D, Kos K.A, Russel P.K. Japanese encephalitis virus glycoproteins. Virology. 1973;56:88–94. doi: 10.1016/0042-6822(73)90289-4. [DOI] [PubMed] [Google Scholar]
  113. Simon K, Lingappa V.R, Ganem D. Secreted hepatitis B surface antigen polypeptides are derived from a transmembrane precursor. J. Cell. Biol. 1988;107:2163–2168. doi: 10.1083/jcb.107.6.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Sinangil F, Loyter A, Volsky D.J. Quantitative measurement of fusion between human immunodeficiency virus and cultured cells using membrane fluorescence dequenching. FEBS Lett. 1988;239:88–92. doi: 10.1016/0014-5793(88)80551-9. [DOI] [PubMed] [Google Scholar]
  115. Skehel J.J, Wiley D.C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell. 1998;95:871–874. doi: 10.1016/s0092-8674(00)81710-9. [DOI] [PubMed] [Google Scholar]
  116. Smit J.M, Bittman R, Wilschut J. Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J. Virol. 1999;73:8476–8484. doi: 10.1128/jvi.73.10.8476-8484.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Stadler K, Allison S.L, Schalich J, Heinz F.X. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol. 1997;71:8475–8481. doi: 10.1128/jvi.71.11.8475-8481.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Stegmann T, Schoen P, Bron R, Wey J, Bartoldus I, Ortiz A, Nieva J.L, Wilschut J. Evaluation of viral membrane fusion assays. Comparison of the octadecylrhodamine dequenching assay with the pyrene excimer assay. Biochemistry. 1993;32:11330–11337. doi: 10.1021/bi00093a009. [DOI] [PubMed] [Google Scholar]
  119. Stegmann T, White J.M, Helenius A. Intermediates in influenza induced membrane fusion. EMBO J. 1990;9:4231–4241. doi: 10.1002/j.1460-2075.1990.tb07871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Steinhauer D.A, Wharton S.A, Skehel J.J, Wiley D.C, Hay A.J. Vol. 88. 1991. Amantadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: Evidence for virus-specific regulation of the pH of glycoprotein transport vesicles; pp. 11525–11529. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Stiasny K, Allison S.L, Marchler-Bauer A, Kunz C, Heinz F.X. Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J. Virol. 1996;70:8142–8147. doi: 10.1128/jvi.70.11.8142-8147.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Stuart D, Gouet P. Viral envelope glycoproteins swing into action. Structure. 1995;3:645–648. doi: 10.1016/s0969-2126(01)00199-x. [DOI] [PubMed] [Google Scholar]
  123. Summers P.L, Cohen W.H, Ruiz M.M, Hase T, Eckels K.H. Flaviviruses can mediate fusion from without in Aedes albopictus mosquito cell cultures. Virus Res. 1989;12:383–392. doi: 10.1016/0168-1702(89)90095-6. [DOI] [PubMed] [Google Scholar]
  124. Tan K, Liu J, Wang J, Shen S, Lu M. Vol. 94. 1997. Atomic structure of a thermostable subdomain of HIV-1 gp41; pp. 12303–12308. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Tsai T.F, Yu Y.X. In: Vaccines. Plotkin S, Mortimer E, editors. WB Saunders; Philadelphia: 1995. pp. 691–713. [Google Scholar]
  126. Ueba N, Kimura T. Polykaryocytosis induced by certain arboviruses in monolayers of BHK-21-528 cells. J. Gen. Virol. 1977;34:369–373. doi: 10.1099/0022-1317-34-2-369. [DOI] [PubMed] [Google Scholar]
  127. Vanlandschoot P, Beirnaert E, Barrere B, Calder L, Millar B, Wharton S, Jou W.M, Fiers W. An antibody which binds to the membrane-proximal end of influenza virus haemagglutinin (H3 subtype) inhibits the low-pH-induced conformational change and cell-cell fusion but does not neutralize virus. J. Gen. Virol. 1998;79:1781–1791. doi: 10.1099/0022-1317-79-7-1781. [DOI] [PubMed] [Google Scholar]
  128. Vazquez M.I, Rivas G, Cregut D, Serrano L, Esteban M. The vaccinia virus 14-kilodalton (A27L) fusion protein forms a triple coiled-coil structure and interacts with the 21-kilodalton (A17L) virus membrane protein through a C-terminal alpha-helix. J. Virol. 1998;72:10126–10137. doi: 10.1128/jvi.72.12.10126-10137.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Venien B.C, Fuller S.D. The organization of the spike complex of Semliki Forest virus. J. Mol. Biol. 1994;236:572–583. doi: 10.1006/jmbi.1994.1166. [DOI] [PubMed] [Google Scholar]
  130. Vennema H, Godeke G.J, Rossen J.W, Voorhout W.F, Horzinek M.C, Opstelten D.J, Rottier P.J. Nucleocapsid-independent assembly of coronaviruslike particles by co-expression of viral envelope protein genes. EMBO J. 1996;15:2020–2028. doi: 10.1002/j.1460-2075.1996.tb00553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Vogel R.H, Provencher S.W, von B.C, Adrian M, Dubochet J. Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs. Nature. 1986;320:533–535. doi: 10.1038/320533a0. [DOI] [PubMed] [Google Scholar]
  132. Volkova T.D, Vorovich M.F, Ivanov V.T, Timofeev A.V, Volpina O.M. A monoclonal antibody that recognizes the predicted tick-borne encephalitis virus E protein fusion sequence blocks fusion. Arch. Virol. 1999;144:1035–1039. doi: 10.1007/s007050050566. [DOI] [PubMed] [Google Scholar]
  133. Vorovitch M.F, Timofeev A.V, Atanadze S.N, Tugizov S.M, Kushch A.A, Elbert L.B. pH-dependent fusion of tick-borne encephalitis virus with artificial membranes. Arch. Virol. 1991;118:133–138. doi: 10.1007/BF01311309. [DOI] [PubMed] [Google Scholar]
  134. Wahlberg J.M, Bron R, Wilschut J, Garoff H. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J. Viral. 1992;66:7309–7318. doi: 10.1128/jvi.66.12.7309-7318.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Wahlberg J.M, Garoff H. Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells. J. Cell. Biol. 1992;116:339–348. doi: 10.1083/jcb.116.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Wang S, He R, Anderson R. PrM- and cell-binding domains of the dengue virus E protein. J. Viral. 1999;73:2547–2551. doi: 10.1128/jvi.73.3.2547-2551.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Watson D.G, Moehring J.M, Moehring T.J. A mutant CHO-K1 strain with resistance to Pseudomonas exotoxin A and alphaviruses fails to cleave Sindbis virus glycoprotein PE2. J. Virol. 1991;65:2332–2339. doi: 10.1128/jvi.65.5.2332-2339.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Weissenhorn W, Carfi A, Lee K.H, Skehel J.J, Wiley D.C. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol. Cell. 1998;2:605–616. doi: 10.1016/s1097-2765(00)80159-8. [DOI] [PubMed] [Google Scholar]
  139. Weissenhorn W, Dessen A, Calder L.J, Harrison S.C, Skehel J.J, Wiley D.C. Structural basis for membrane fusion by enveloped viruses. Mol. Membr. Biol. 1999;16:3–9. doi: 10.1080/096876899294706. [DOI] [PubMed] [Google Scholar]
  140. Weissenhorn W, Dessen A, Harrison S.C, Skehel J.J, Wiley D.C. Atomic structure of the ectodomain from HIV -1 gp41. Nature. 1997;387:426–430. doi: 10.1038/387426a0. [DOI] [PubMed] [Google Scholar]
  141. Wengler G. Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J. Viral. 1989;63:2521–2526. doi: 10.1128/jvi.63.6.2521-2526.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Wengler G, Nowak T, Wahn K. Analysis of the influence of proteolytic cleavage on the structural organization of the surface of the West Nile flavivirus leads to the isolation of a protease-resistant E protein oligomer from the viral surface. Virology. 1987;160:210–219. doi: 10.1016/0042-6822(87)90062-6. [DOI] [PubMed] [Google Scholar]
  143. White J.M. Viral and cellular membrane fusion proteins. Annu. Rev. Physiol. 1990;52:675–697. doi: 10.1146/annurev.ph.52.030190.003331. [DOI] [PubMed] [Google Scholar]
  144. White J.M. Membrane fusion. Science. 1992;258:917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
  145. Whitt M.A, Zagouras P, Crise B, Rose J.K. A fusion-defective mutant of the vesicular stomatitis virus glycoprotein. J. Virol. 1990;64:4907–4913. doi: 10.1128/jvi.64.10.4907-4913.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Wilson I.A, Skehel J.J, Wiley D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3Å resolution. Nature. 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  147. Yamshchikov V.F, Compans R.W. Regulation of the late events in flavivirus protein processing and maturation. Virology. 1993;192:38–51. doi: 10.1006/viro.1993.1006. [DOI] [PubMed] [Google Scholar]
  148. Zhang L, Ghosh H.P. Characterization of the putative fusogenic domain in vesicular stomatitis virus glycoprotein G. J. Viral. 1994;68:2186–2193. doi: 10.1128/jvi.68.4.2186-2193.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]