Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein (original) (raw)

Abstract

Structural similarity between viral T cell epitopes and self-peptides could lead to the induction of an autoaggressive T cell response. Based on the structural requirements for both MHC class 11 binding and TCR recognition of an immunodominant myelin basic protein (MBP) peptide, criteria for a data base search were developed in which the degeneracy of amino acid side chains required for MHC class 11 binding and the conservation of those required for T cell activation were considered. A panel of 129 peptides that matched the molecular mimicry motif was tested on seven MBP-specific T cell clones from multiple sclerosis patients. Seven viral and one bacterial peptide efficiently activated three of these clones. Only one peptide could have been identified as a molecular mimic by sequence alignment. The observation that a single T cell receptor can recognize quite distinct but structurally related peptides from multiple pathogens has important implications for understanding the pathogenesis of autoimmunity.

References

  1. Allegretta M, Nicklas J.A, Sriram S, Albertini R.J. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science. 1990;247:718–721. doi: 10.1126/science.1689076. [DOI] [PubMed] [Google Scholar]
  2. Baig S, Olsson O, Olsson T, Love A, Jeansson S, Link H. Cells producing antibody to measles and herpes simplex virus in cerebrospinal fluid and blood of patients with multiple sclerosis and controls. clin. Exp. Immunol. 1989;78:390–395. [PMC free article] [PubMed] [Google Scholar]
  3. Brocke S, Gaur A, Piercy C, Gautam A, Gijbels K, Fathman C.G, Steinman L. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superahtigen. Nature. 1993;365:642–644. doi: 10.1038/365642a0. [DOI] [PubMed] [Google Scholar]
  4. Brown L.R, Nygard N.R, Graham M.B, Bono C, Braciale V.L, Gorka J, Schwartz B.D, Braciale T.J. Recognition of the influenza hemagglutinin by class II MHC-restricted T lymphocytes and antibodies. I. Site definition and implications for antigen presentation and T lymphocyte recognition. J. Immunol. 1991;147:2677–2684. [PubMed] [Google Scholar]
  5. Brown J.H, Jardetzky T.S, Gorge J.C, Stern L.J, Urban R.G, Strominger J.L, Wiley D.C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;364:33–39. doi: 10.1038/364033a0. [DOI] [PubMed] [Google Scholar]
  6. Burns J, Rosenzweig A, Zweiman B, Lisak R.P. Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell. Immunol. 1983;81:435–440. doi: 10.1016/0008-8749(83)90250-2. [DOI] [PubMed] [Google Scholar]
  7. Burrows S.R, Khanna R, Burrows J.M, Moss D.J. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) clones cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease. J. Exp. Med. 1994;179:1155–1161. doi: 10.1084/jem.179.4.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Busch R, Hill C.M, Hayball J.D, Lamb J.R, Rothbard J.B. Effect of a natural polymorphism at residue 86 of the HLA-DR β chain on peptide binding. J. Immunol. 1991;147:1292–1298. [PubMed] [Google Scholar]
  9. Chambers T.M, Yamnikova S, Kawaoka Y, Lvov D.K, Webster R.G. Antigenic and molecular characterization of subtype H13 hemagglutinin of influenza virus. Virology. 1989;172:180–188. doi: 10.1016/0042-6822(89)90119-0. [DOI] [PubMed] [Google Scholar]
  10. Cole B.C, Griffiths M.M. Triggering and exacerbation of autoimmune arthritis by the mycoplasma arthritidis superantigen MAM. Arthritis Rheum. 1993;36:994–1002. doi: 10.1002/art.1780360717. [DOI] [PubMed] [Google Scholar]
  11. Conrad B, Weidmann E, Trucco G, Rudert W.A, Behboo R, Ricordi C, Rodriquez-Rilo H, Finegold D, Trucco M. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology. Nature. 1994;371:351–355. doi: 10.1038/371351a0. [DOI] [PubMed] [Google Scholar]
  12. Datta A.K, Feighny R.J, Pagano J.S. Induction of Epstein-Barr virus-associated DNA polymerase by 12-O-tetradecanoylphorbol-13-acetate. J. Biol. Chem. 1980;255:5120–5125. [PubMed] [Google Scholar]
  13. Epstein M.A, Achong B.G. Pathogenesis of infectious mononucleosis. Lancet. 1977;ii:1270–1272. doi: 10.1016/s0140-6736(77)92673-3. [DOI] [PubMed] [Google Scholar]
  14. Friedman S.M, Crow M.K, Tumang J.R, Tumang M, Xu Y, Hodtsev A.S, Cole B.C, Posnett D.N. Characterization of human T cells reactive with the mycoplasma arthritidis-derived superantigen (MAM): generation of a monoclonal antibody against Vβ17, the T cell receptor gene product expressed by a large fraction of MAMreactive human T cells. J. Exp. Med. 1991;174:891–900. doi: 10.1084/jem.174.4.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fujinami R.S, Oldstone M.B.A. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: a mechanism for autoimmunity. Science. 1985;230:1043–1045. doi: 10.1126/science.2414848. [DOI] [PubMed] [Google Scholar]
  16. Hickey W.F, Hsu B.L, Kimura H. T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 1991;28:254–260. doi: 10.1002/jnr.490280213. [DOI] [PubMed] [Google Scholar]
  17. Johnson R.T, Griffin D.E, Hirsch J.S, Wolinsky J.S, Rodenbeck S, Lindo De Soriano I, Vaisberg A. Measles encephalomyelitis: clinical and immunological studies. N Engl. J. Med. 1984;310:137–141. doi: 10.1056/NEJM198401193100301. [DOI] [PubMed] [Google Scholar]
  18. Kappler J.W, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell. 1987;49:273–280. doi: 10.1016/0092-8674(87)90568-x. [DOI] [PubMed] [Google Scholar]
  19. Kaufman D.L, Clare-Salzler M, Tian J, Forsthuber T, Ting G.S.P, Robinson P, Atkinson M.A, Sercarz E.E, Tobin A.J, Lehmann P.V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993;366:69–72. doi: 10.1038/366069a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kisielow P, Teh H.S, Blüthmann H, von Boehmer H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature. 1988;335:730–733. doi: 10.1038/335730a0. [DOI] [PubMed] [Google Scholar]
  21. Kurtzke J.F. Epidemiology of multiple sclerosis. In: Vinken P.J, Bruyn G.W, Klawans H.L, Koetsier J.C, editors. Elsevier Science Publishing; New York: 1985. pp. 259–287. (Handbook of Clinical Neurology). [Google Scholar]
  22. Kurtzke J.F, Hyllestad K. Multiple sclerosis in the Faroe Islands: clinical and epidemiological features. Ann. Neurol. 1979;5:6–21. doi: 10.1002/ana.410050104. [DOI] [PubMed] [Google Scholar]
  23. Lehmann P.V, Forsthuber T, Miller A, Sercarz E.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992;358:155–157. doi: 10.1038/358155a0. [DOI] [PubMed] [Google Scholar]
  24. Madden D.R, Garboczi D.N, Wiley D.C. The antigenic identity of peptide-MHC complexes: a comparison of the conformation of five viral peptides presented by HLA-A2. Cell. 1993;75:693–708. doi: 10.1016/0092-8674(93)90490-h. [DOI] [PubMed] [Google Scholar]
  25. Martin R, Jaraquemada D, Flerlage M, Richert J, Whitaker J, Long E.O, McFarlin D.E, McFarland H.F. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J. Immunol. 1990;145:540–548. [PubMed] [Google Scholar]
  26. Oldstone M.B.A. Molecular mimicry and autoimmune disease. Cell. 1990;50:819–820. doi: 10.1016/0092-8674(87)90507-1. [DOI] [PubMed] [Google Scholar]
  27. Olerup O, Hillert J, Fredrickson S, Olsson T, Kam-Hansen S, Moeller E, Carlsson B, Wallin J. Vol. 86. 1989. Primary chronic progressive and relapsing/remitting multiple sclerosis: two immunogenetically distinct disease entities; pp. 7113–7117. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ota K, Matsui M, Milford E.L, Mackin G.A, Weiner H.L, Hafler D.A. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature. 1990;346:183–187. doi: 10.1038/346183a0. [DOI] [PubMed] [Google Scholar]
  29. Pette M, Fujita K, Wilkinson D, Altmann D.M, trowsdale J, Giegerich G, Hinkkanen A, Epplen J.T, Kappos L, Wekerle H. Vol. 87. 1990. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors; pp. 7968–7972. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ray C.G, Palmer J.P, Crossley J.R, Williams R.H. Coxsackie B virus antibody responses in juvenile-onset diabetes mellitus. Clin. Endocrinol. 1980;12:375–378. doi: 10.1111/j.1365-2265.1980.tb02723.x. [DOI] [PubMed] [Google Scholar]
  31. Reay P.A, Kantor R.M, Davis M.M. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93–103) J. Immunol. 1994;150:3946–3957. [PubMed] [Google Scholar]
  32. Rose N.R, Wolfgram L.J, Herskowitz A, Beisel K.W. Postinfectious autoimmunity: two distinct phases of coxsackie B3induced myocarditis. Ann. NY Acad. Sci. 1986;475:146–156. doi: 10.1111/j.1749-6632.1986.tb20864.x. [DOI] [PubMed] [Google Scholar]
  33. Schluesener H.J, Wekerle H. Autoaggressive T lymphocyte lines recognizing the encephalitogenic region of myelin basic protein: in vitro selection from unprimed T lymphocyte populations. J. Immunol. 1985;135:3128–3133. [PubMed] [Google Scholar]
  34. Schwarz E, Freese U.K, Gissman L, Mayer W, Roggenbuck B, Stremlau A, zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314:111–114. doi: 10.1038/314111a0. [DOI] [PubMed] [Google Scholar]
  35. Sebzda E, Wallace V.A, Mayer J, Yeung R.S.M, Mak T.W, Ohashi P.S. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science. 1994;263:1615–1618. doi: 10.1126/science.8128249. [DOI] [PubMed] [Google Scholar]
  36. Spielman R.S, Nathenson N. The genetics of susceptibility to multiple sclerosis. Epidemiol. Rev. 1982;4:45–65. doi: 10.1093/oxfordjournals.epirev.a036251. [DOI] [PubMed] [Google Scholar]
  37. Spruance S. Pathogenesis of herpes simplex labialis: experimental induction of lesions with UV light. J. Clin. Microbiol. 1985;22:366–368. doi: 10.1128/jcm.22.3.366-368.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stadt D, Kappos L, Rohrbach E, Heun R, Ratzka M. Occurrence of MRI abnormalities in patients with isolated optic neuritis. Eur. Neurol. 1990;30:305–309. doi: 10.1159/000117361. [DOI] [PubMed] [Google Scholar]
  39. Tisch R, Yang X.-D, Singer S.M, Liblau R.S, Fugger L, McDevitt H.O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993;366:72–75. doi: 10.1038/366072a0. [DOI] [PubMed] [Google Scholar]
  40. Tovey M.G, Lenoir G, Begon-Lours J. Activation of latent Epstein-Barr virus by antibody to human IgM. Nature. 1978;276:270–272. doi: 10.1038/276270a0. [DOI] [PubMed] [Google Scholar]
  41. van Eden W, Holoshitz J, Nevo Z, Frenkel A, Klajman A, Cohen I.R. Vol. 82. 1985. Arthritis induced by a T-lymphocyte clone that responds to mycobacterium tuberculosis and to cartilage proteoglycans; pp. 5117–5120. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. van Eden W, Thole J.E.R, van der Zee R, Noordzij A, van Embden J.D.A, Hensen E.J, Cohen I.R. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature. 1988;331:171–173. doi: 10.1038/331171a0. [DOI] [PubMed] [Google Scholar]
  43. Vogt A.B, Kropshofer H, Kalbacher H, Kalbus M, Rammensee H.-G, Coligan J.E, Martin R. Ligand motifs of HLADRB5∗0101 and DRB1∗1501 molecules delineated from self-peptides. J. Immunol. 1994;151:1665–1673. [PubMed] [Google Scholar]
  44. Wekerle H, Linington C, Lassmann H, Meyermann R. Cellular immune reactivity within the CNS. Trends Neurosci. 1986;9:271–277. [Google Scholar]
  45. Wucherpfennig K.W, Weiner H.L, Hafler D.A. T-cell recognition of myelin basic protein. Immunol. Today. 1991;12:277–282. doi: 10.1016/0167-5699(91)90126-E. [DOI] [PubMed] [Google Scholar]
  46. Wucherpfennig K.W, Sette A, Southwood S, Oseroff C, Matsui M, Strominger J.L, Hafler D.A. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J. Exp. Med. 1994;179:279–290. doi: 10.1084/jem.179.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wucherpfennig K.W, Zhang J, Witek C, Matsui M, Modabber Y, Ota K, Hafler D.A. Clonal expansion and persistence of human T cells specific for an immunodominant myelin basic protein peptide. J. Immunol. 1994;150:5581–5592. [PubMed] [Google Scholar]
  48. Zamvil S.S, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 1990;8:579–621. doi: 10.1146/annurev.iy.08.040190.003051. [DOI] [PubMed] [Google Scholar]
  49. Zhang J, Markovic S, Lacet B, Raus J, Weiner H.L, Hafler D.A. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J. Exp. Med. 1994;179:973–984. doi: 10.1084/jem.179.3.973. [DOI] [PMC free article] [PubMed] [Google Scholar]