Tolerance and autoimmunity in TCR transgenic mice specific for myelin basic protein (original) (raw)
Abstract
Summary: T‐cell receptor (TCR) transgenic mice provide the ability to follow the maturation and fate of T cells specific for self‐antigens in vivo. This technology represents a major breakthrough in the study of autoimmune diseases in which specific antigens have been implicated. Proteins expressed within the central nervous system are believed to be important autoantigens in multiple sclerosis, TCR transgenic models specific for myelin basic protein (MBP) allowed us to assess the role of tolerance in providing protection from T cells with this specificity Our studies demonstrate that T cells specific for the immunodominant epitope of MBP do not undergo tolerance in vivo and that TCR transgenic mice are susceptible to spontaneous autoimmune disease. The susceptibility to spontaneous disease is dependent on exposure to microbial antigens, MBP TCR transgenic models expressing TCRs specific for the same epitope of MBP but utilizing different Vα genes exhibit differing susceptibilities to, spontaneous disease. These data support the idea that genetic and environmental differences play a role in susceptibility to autoimmunity MBP TCR transgenic models are playing an important role in defining mechanisms by which infectious agents trigger autoimmune disease as well as defining mechanisms by which tolerance is induced to distinct epitopes within self‐antigens.
Acknowledgements This research was supported by grams NS35126‐02 from the National Institutes of Health and 25.59‐A‐3/1 from the National Multiple Sclerosis Society. J. G. is supported in part by a Harry Weaver Junior Faculty Award (2080‐A‐2) from the National Multiple Sclerosis Society. The author would like to thank Thea Brabb and Eric Husehy for many helpful discussions of this work and Thea Brabb, Eric Huseby, Antoine Perchellet and Audrey Stevens for critical reading of the manuscript.
References
- 1.Raine CS. The neuropathology of multiple sclerosis In: Raine CS, McFarland HF, Tourtellotte WW, eds. Multiple sclerosis: clinical and pathogenetic basis. London : Chapman & Hall; 1997. p. 151–171. [Google Scholar]
- 2.Duquette P, Pleines J, Girard M, Charest L, Senecal QM, Masse C. The increased susceptibility of women to multiple sclerosis. Can J Neurol Sci 1992;19:466–471. [PubMed] [Google Scholar]
- 3.Martin R, McFarland HF. Immunology of multiple sclerosis and experimental allergic encephalomyelitis In: Raine CS, McFarland HF, Tourtellotte WW, eds. Multiple sclerosis: clinical and pathogenic basis. London : Chapman & Hall; 1997. p. 221–242. [Google Scholar]
- 4.Sadovnick AD, _et al._A population‐based study of multiple sclerosis in twins: update. Aim Neurol 1993;33:281–285. [DOI] [PubMed] [Google Scholar]
- 5.McFarland HF, Martin R, McFarlin DE. Genetic influences in multiple sclerosis In: Raine CS, McFarland HF, Tourtellotte WW, eds. Multiple sclerosis: clinical and pathogenic basis. London : Chapman & Hall; 1997. p. 205–219. [Google Scholar]
- 6.Kurtzke JF. The epidemiology of multiple sclerosis In: Raine CS, McFarland HF, Tourtellotte WW. eds. Multiple sclerosis: clinical and pathogenic basis. London : Chapman & Hall; 1997. p. 91–139. [Google Scholar]
- 7.Kurtzke JF. Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev 1993;6:382–427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Andersen O, Lygner PE, Bergstrom T, Andersson M, Vahlne A. Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J Neurol 1993;240:417–422. [DOI] [PubMed] [Google Scholar]
- 9.Sibley WA, Bamford CR, Clark K. Clinical viral infections and multiple sclerosis. Lancet 1985;1(8441): 1313–1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Panitch HS, Hirsch RL, Schindler J, Johnson KP. Treatment of multiple sclerosis with γ interferon: exacerbations associated with activation of the immune system. Neurology 1987;37:1097–1102. [DOI] [PubMed] [Google Scholar]
- 11.Ter Meulen V, Katz M. The proposed viral etiology of multiple sclerosis and related demylinating diseases In: Raine CS, McFarland HF, Tourtellotte WW, eds. Multiple sclerosis: clinical and pathogenic basis. London : Chapman & Hall; 1997. p. 287–305. [Google Scholar]
- 12.Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992;10:153–187. [DOI] [PubMed] [Google Scholar]
- 13.Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230:1043–1045. [DOI] [PubMed] [Google Scholar]
- 14.Jahnke U, Fisher EH, Alvord, EC Jr. Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science 1985;229:282–287. [DOI] [PubMed] [Google Scholar]
- 15.Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell‐mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995;80:695–705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Talbot PJ, Paquette JS, Ciurli C, Antel JP, Ouellet F. Myelin basic protein and human coronavirus 229E cross‐reactive T cells in multiple sclerosis, Ann Neurol 1996;39:233–240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Paterson PY. Experimental autoimmune (allergic) encephalomyelitis: induction, pathogenesis, and suppression In: Mescher PA, HS Mueller‐Eberhard, eds. Textbook of immunopathology. New York : Grune and Stratton: 1976. p. 179–213. [Google Scholar]
- 18.Raine CS. The lesion in multiple sclerosis and chronic relapsing experimental allergic encephalomyelitis: a structural camparison In: Raine CS, McFarland HF, Tourtellotte WW, eds. Multiple sclerosis: clinical and pathogenic basis. London : Chapman & Hall; 1997. p. 243–286. [Google Scholar]
- 19.Pettinelli CB, McFarlin DE. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vivo activation of lymph node cells by myelin basic protein: requirement for Lyt‐1 2+ T lymphocytes. J Immunol 1981;127:1420–1423. [PubMed] [Google Scholar]
- 20.Paterson PY, Swanborg RH. Demyelinating diseases of the central and peripheral nervous systems In: Samter M, Talmage DW, Frank MM, Austen KF, Claman HN, eds. Immunological diseases. 4th ed. Boston ( MA ) : Little Brown and Co; 1988. p. 1877–1912. [Google Scholar]
- 21.Zamvil SS, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 1990;8:579–621. [DOI] [PubMed] [Google Scholar]
- 22.Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Roth bard JB T‐cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 1986;324:258–260. [DOI] [PubMed] [Google Scholar]
- 23.Urban JL, _et al._Restricted use of T cell receptor V genes in murine autoimmune encephalomyelitis raises possibilities for antibody therapy. Cell 1988;54:577–592. [DOI] [PubMed] [Google Scholar]
- 24.Acha Orbea H, _et al._Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 1988;54:263–273. [DOI] [PubMed] [Google Scholar]
- 25.Zamvil SS, Mitchell DJ, Powell MB, Sakai K, Rothbard JB, Steinman L. Multiple discrete encephalitogenic epitopes of the autoantigen myelin basic protein include a determinant for I‐E class II‐restricted T cells. J Exp Med 1988;168:1181–1186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Lehmann PV, Forsthuber T, Miller A, Sercarz EE. Spreading of T‐cell autoimmunity to cryptic determinants of an auto‐antigen. Nature 1992;358:155–157. [DOI] [PubMed] [Google Scholar]
- 27.Tuohy VK, Lu Z, Sobel RA, Laursen RA, Lees MB. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J Immunol 1989;142: 1523–1527. [PubMed] [Google Scholar]
- 28.Sakai K, Zamvil SS, Mitchell DJ, Lim M, Rothbard JB, Steinman L. Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J Neuroimmunol 1988;19:21–32. [DOI] [PubMed] [Google Scholar]
- 29.Brown AM, McFarlin DE. Relapsing experimental allergic encephalomyelitis in the SJL/J mouse. Lab Invest Methods Cell Biol 1981;45:278–284. [PubMed] [Google Scholar]
- 30.McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 1995;182:75–85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Raine CS, Cannella B, Duijvestijn AM, Cross AH. Homing to central nervous system vasculature by antigen specific lymphocytes. II. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination. Lab Invest 1990;63:476–489. [PubMed] [Google Scholar]
- 32.Cannella B, Cross AH, Raine CS. Adhesion‐related molecules in the central nervous system. Upregulation correlates with inflammatory cell influx during relapsing experimental autoimmune encephalomyelitis. Lab Invest 1991;65:23–31. [PubMed] [Google Scholar]
- 33.Steffen BJ, Butcher EC, Engelhardt B. Evidence for involvement of ICAM‐1 and VCAM‐1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am J Pathol 1994;145:189–201. [PMC free article] [PubMed] [Google Scholar]
- 34.O'Neill JK, _et al._Expression of vascular addressins and ICAM‐1 by endothelial cells in the spinal cord during chronic relapsing experimental allergic encephalomyelitis in the Biozzi AB/H mouse. Immunology 1991;72:520–525. [PMC free article] [PubMed] [Google Scholar]
- 35.Wekerle H, Engelhardt B, Risau W, Meyermann R. Interaction of T lymphocytes with cerebral endothelial cells in vitro. Brain Pathol 1991;1:107–114. [DOI] [PubMed] [Google Scholar]
- 36.Merrill JE, Kono DH, Clayton J, Ando DG, Hinton DR, Hofman FM. Inflammatory leukocytes and cytokines in the peptide‐induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc Natl Acad Sci USA 1992;89:574–578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Renno T, Lin J‐Y, Piccirillo C, Antel J, Owens T. Cytokine production by cells in cerebrospinal fluid during experimental allergic encephalomyelitis in SJL/J mice. J Neuroimmunol 1994;49:1–7. [DOI] [PubMed] [Google Scholar]
- 38.Karpus WJ, _et al._An important role for the chemokine macrophage inflammatory protein‐1 α in the pathogenesis of the T cell‐mediated autoimmune disease, experimental autoimmune encephalomyelitis. J Immunol 1995;155:5003–5010. [PubMed] [Google Scholar]
- 39.Issazadeh S, Ljungdahl A, Hojeberg B, Mustafa M, Olsson T. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin‐10. interleukin‐12. cytolysin, tumor necrosis factor a and tumor necrosis factor β. J Neuroimmunol 1995;61:205–212. [DOI] [PubMed] [Google Scholar]
- 40.Issazadeh S, Lorentzen JC, Mustafa MI, Hojeberg B, Mussener A, Olsson T. Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin‐10 and transforming growth factor‐p. J Neuroimmunol 1996;69:103–115. [DOI] [PubMed] [Google Scholar]
- 41.Renno T, Krakowski M, Piccirillo C, Lin J‐Y, Owens T. TNF‐α expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. J Immunol 1995;154:944–953. [PubMed] [Google Scholar]
- 42.Crisi GM, Santambrogio L, Hochwald GM, Smith SR, Carlino JA, Thorbecke GJ. Staphylococcal enterotoxin B and rumor‐necrosis factor‐α‐induced relapses of experimental allergic encephalomyelitis: protection by transforming growth factor‐β and interleukin‐10. Eur J Immunol 1995;25:3035–3040. [DOI] [PubMed] [Google Scholar]
- 43.Powell MB, _et al._Lymphotoxin and tumor necrosis factor‐α production by myelin basic protein‐specific T cell clones correlates with encephalitogenicity. Int Immunol 1990;2:539–544. [DOI] [PubMed] [Google Scholar]
- 44.Selmaj KW, Raine CS. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 1988;23:339–346. [DOI] [PubMed] [Google Scholar]
- 45.Chung IY, Norris JG, Benveniste EN. Differential tumor necrosis factor α expression by astrocytes from experimental allergic encephalomyelitis‐susceptible and–resistant rat strains. J Exp Med 1991;173:801–811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Kennedy MK, Torrance DS, Picha KS, Mohler KM. Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL‐10 mRNA expression correlates with recovery. J Immunol 1992;149:2496–2505. [PubMed] [Google Scholar]
- 47.Owens T, Renno T, Taupin V, Krakowski M. Inflammatory cytokines in the brain: does the CNS shape immune response Immunol Today 1994;15:566–571. [DOI] [PubMed] [Google Scholar]
- 48.Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4. and prostaglandin E expression in the brain, J Exp Med 1992;176:1355–1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Begolka WS, Vanderlugt CL, Rahbe SM, Miller SD. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J Immunol 1998;161:4437–4446. [PubMed] [Google Scholar]
- 50.Van der Veen RC, Stohlman SA. Encephalitogenic Th1 cells arc inhibited by Tb2 cells with related peptide specificity: relative roles of interleukin (IL)‐4 and IL‐10. J Neuroimmunol 1993;48;213–220. [DOI] [PubMed] [Google Scholar]
- 51.Chen Y, Kuchroo V, Inobe J‐I, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance and suppression of autoimmune encephalomyelitis. Science 1994;265:1237–1240. [DOI] [PubMed] [Google Scholar]
- 52.Kuchroo VK, _et al._B7‐1 and B7‐2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy Cell 1994;80:707–718. [DOI] [PubMed] [Google Scholar]
- 53.Khoruts A, Miller SD, Jenkins MK. Neuroantigen‐specific Th2 cells are inefficient suppressors of experimental autoimmune encephalomyelitis induced by effector Th1 cells. J Immunol 1995;155:5011–5017. [PubMed] [Google Scholar]
- 54.Lafaille JJ, _et al._Myelin basic protein‐specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J Exp Med 1997;186:307–312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Bauer J, Wekerle H, Lassmann H. Apoptosis in brain‐specific autoimmune disease. Curr Opin Immunol 1995;7:839–843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Tabi Z, McCombe PA, Pender MP. Apoptotic elimination of Vβ 8.2+ cells from the central nervous system during recovery from experimental autoimmune encephalomyelitis induced by the passive transfer of Vβ8.2+ encephalitogenic T cells. Eur J Immunol 1994;24:2609–2617. [DOI] [PubMed] [Google Scholar]
- 57.Pender MR McCombe PA, Yoong G, Nguyen KB. Apoptosis of αβ T lymphocytes in the nervous system in experimental autoimmune encephalomyelitis: its possible implications for recovery and acquired tolerance. J Autoimmun 1992;5:401–410. [DOI] [PubMed] [Google Scholar]
- 58.Gold R, _et al._Antigen presentation by astrocytes primes rat T lymphocytes for apoptotic cell death. A model for T‐cell apoptosis in vivo. Brain 1996;119:651–659. [DOI] [PubMed] [Google Scholar]
- 59.Ruddle NH, _et al._An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 1990;172:1193–1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Leonard JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 1995;181;381–386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Selmaj K, Papierz W, Glabinski A, Kohno T. Prevention of chronic relapsing experimental autoimmune encephalomyelitis by soluble tumor necrosis factor receptor I. J Neuroimmunol 1995;56:135–141. [DOI] [PubMed] [Google Scholar]
- 62.Sommer N, _et al._The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis, Nat Med 1995;1;244–248. [DOI] [PubMed] [Google Scholar]
- 63.Genain CP, _et al._Prevention of autoimmune demyelination in non‐human primates by a cAMP‐specific phosphodiesterase inhibitor. Proc Natl Acad Sci USA 1995;92:3601–3605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Selmaj K, Raine CS, Cross AH. Anti‐tumor necrosis factor therapy abrogates autoimmune demyelination. Ann Neurol 1991;30:694–700. [DOI] [PubMed] [Google Scholar]
- 65.Sommer N, _et al._Therapeutic potential of phosphodiesterase type 4 inhibition in chronic autoimmune demyelinating disease. J Neuroimmunol 1997;79:54–61. [DOI] [PubMed] [Google Scholar]
- 66.Racke MK, _et al._Cytokine‐induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 1994;180:1961–1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Rott O, Fleischer B, Cash E. Interleukin‐10 prevents experimental allergic encephalomyelitis in rats. Eur J Immunol 1994;24:1434–1440. [DOI] [PubMed] [Google Scholar]
- 68.Racke MK, Dhib JS, Cannella B, Albert PS, Raine CS, McFarlin DE. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor‐β 1. J Immunol 1991;146:3012–3017. [PubMed] [Google Scholar]
- 69.Cash E, Minty A, Ferrara P, Caput D, Fradelizi D, Rott O. Macrophage‐inactivating IL‐13 suppresses experimental autoimmune encephalomyelitis in rats. J Immunol 1994;153:4258–4267. [PubMed] [Google Scholar]
- 70.Racke MK, _et al._Retinoid treatment of experimental allergic encephalomyelitis, IL‐4 production correlates with improved disease course. J Immunol 1995;154:450–458. [PubMed] [Google Scholar]
- 71.Zaller DM, Osman G, Kanagawa O, Hood L. Prevention and treatment of murine experimental allergic encephalomyelitis with T cell receptor V p‐specific antibodies. J Exp Med 1990;171:1943–1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Ben NA, Wekerle H, Cohen IR. Vaccination against autoimmune encephalomyelitis with T‐lymphocyte line cells reactive against myelin basic protein. Nature 1981;292:60–61. [DOI] [PubMed] [Google Scholar]
- 73.Howell MD, Winters ST, Olee T, Powell HC, Carlo DJ, Brostoff SW. Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides [published erratum appears in Science 1990;247:1167,_Science_ 1989;246:668–670. [DOI] [PubMed] [Google Scholar]
- 74.Vandenbark AA, Hashim G, Offner H. Immunization with a synthetic T‐cell receptor V‐region peptide protects against experimental autoimmune encephalomyelitis. Nature 1989;341;541–544. [DOI] [PubMed] [Google Scholar]
- 75.Brocke S, _et al._Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 1996;379:343–346. [DOI] [PubMed] [Google Scholar]
- 76.Nicholson LB, Greer JM, Sohel KA, Lees MB, Kuchroo VK. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity, 1995;3:397–405. [DOI] [PubMed] [Google Scholar]
- 77.Karin N, Mitchell DJ, Brocke S, Ling N, Steinman L. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon γ and tumor necrosis factor α production. J Exp Med 1994;180:2227–2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Kuchroo VK, _et al._A single TCR antagonist peptide inhibits experimental allergic encephalomyelitis mediated by a diverse T cell repertoire. J Immunol 1994;153:3326–3336. [PubMed] [Google Scholar]
- 79.Whitacre CC, Gienapp IE, Orosz CG, Bitar DM. Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. J Immunol 1991; 147:2155–2163. [PubMed] [Google Scholar]
- 80.Metzler B, Wraith DC. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Hit Immunol 1993;5:1159–1165. [DOI] [PubMed] [Google Scholar]
- 81.Chen Y, Inobe J, Marks R, Gonnella P, Kuchroo VK, Weiner HL. Peripheral deletion of antigen‐reactive T cells bi oral tolerance [published erratum appears in Nature 1995;377:257]. Nature 1995;376:177–180. [DOI] [PubMed] [Google Scholar]
- 82.Goverman J, Woods A, Larson L, Weiner LR Hood L, Zaller DM. Transgenic mice that express a myelin basic protein‐specific T cell receptor develop spontaneous autoimmunity. Cell 1993;72:551–560. [DOI] [PubMed] [Google Scholar]
- 83.Sant'Angelo DB, _et al._A molecular map of T cell development. Immunity 1998;9;179–186. [DOI] [PubMed] [Google Scholar]
- 84.Offner H. Vaccination with BV8S2 protein amplifies TCR‐specific regulation and protection against experimental autoimmune encephalomyelitis in TCR BV8S2 transgenic mice. J Immunol 1998;161:2178–2186. [PubMed] [Google Scholar]
- 85.Fairchild PJ, Wildgoose R, Atherton E, Webb S, Wraith DC An autoantigenic T cell epitope forms unstable complexes with class IIMHC: a novel route for escape from tolerance induction. Int Immunol 1993;5:1151–1158. [DOI] [PubMed] [Google Scholar]
- 86.Mason K, Denney DW Jr, McConnell HM. Myelin basic protein peptide complexes with the class II MHC molecules I‐Au and I‐Ak form and dissociate rapidly at neutral pH J Immunol 1995;154:5216–5227. [PubMed] [Google Scholar]
- 87.Liu GY, Fairchild PJ, Smith RM, Prowle JR, Kioussis D, Wraith DC. Low avidity recognition of self‐antigen by T cells permits escape from central tolerance. Immunity 1995;3:407–415. [DOI] [PubMed] [Google Scholar]
- 88.Pearson CI, van Ewijk, W , McDevitt, HO. Induction of apoptosis and T helper 2 (Tb2) responses correlates with peptide affinity for the major histocompatibility complex in self‐reactive T cell receptor transgenic mice. J Exp Med 1997;185;583–599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Brabb T, _et al._Thymic stromal organization is regulated by the specificity of T cell receptor/major histocompatibility complex interactions. Eur J Immunol 1997;27:136–146. [DOI] [PubMed] [Google Scholar]
- 90.Harrington CJ, _et al._Differential tolerance is induced in T cells recognizing distinct epitopes of myelin basic protein. Immunity 1998;8:571–580. [DOI] [PubMed] [Google Scholar]
- 91.Bhardwaj V, _et al._T cell determinant structure of myelin basic protein in B10.PL, SJL/J, and their F1s. J Immunol 1994;152:3711–3719. [PubMed] [Google Scholar]
- 92.Targoni OS, Lehmann PV. Endogenous myelin basic protein inactivates the high avidity T cell repertoire. J Exp Med 1998;187:2055–2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Loftus C, Huseby ES, Gopaul P, Beeson C, Goverman J. Highly cross‐reactive T cell responses to myelin basic protein epitopes reveal a non‐predictable form of TCR degeneracy J Immunol (In press). [PubMed] [Google Scholar]
- 94.Linthicum DS, Munoz JJ, Blaskett A. Acute experimental autoimmune encephalomyelitis in mice. I. Adjuvant action of Bordetella pertussis is due to vasoactive amine sensitization and increased vascular permeability of the central nervous system. Cell Immunol 1982;73:299–310. [DOI] [PubMed] [Google Scholar]
- 95.Munoz JJ, Bernard CC, Mackay IR. Elicitation of experimental allergic encephalomyelitis (EAE) in mice with the aid of pertussigen. Cell Immunol 1984;83:92–100. [DOI] [PubMed] [Google Scholar]
- 96.Brabb T, Goldrath AW, von Dassow, R , Paez, A , Liggitt HD, Goverman J. Triggers of autoimmune disease in a murine T‐cell receptor transgenic model for multiple sclerosis. J Immunol 1997;159;497–507. [PubMed] [Google Scholar]
- 97.Lafaille JJ, Nagashima K, Katsuki U, Tonegawa S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti‐myelin basic proteni T cell receptor transgenic mice. Cell 1994;78;399–408. [DOI] [PubMed] [Google Scholar]
- 98.Baron JL, Madri JA, Ruddle NH, Hashim G. Janeway C A Jr. Surface expression of a 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 1993;177:57–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Rodriguez M, Dunkel AJ, Thiemann RL, Leibowitz J, Zijlstra M, Jaenisch R. Abrogation of resistance to Theiler's virus‐induced demyelination in H‐2b mice deficient in β 2–microglobulin. J Immunol 1993;151:266–276. [PubMed] [Google Scholar]
- 100.Encinas JA, _et al._Genetic analysis of susceptibility to experimental autoimmune encephalomyelitis in a cross between SJL/J and B10.S mice. J Immunol 1996;157;2186–2192. [PubMed] [Google Scholar]
- 101.Van‐de Keere, F , Tonegawa, S. CD4+ T Cells prevent spontaneous experimental autoimmune encephalomyelitis in anti‐myelin basic protein T cell receptor transgenic mice. J Exp Med 1998;188:1875–1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Olivares‐Villagomez D, Wang Y, Lafaille JJ. Regulatory CD4+ T cells expressing endogenous T cell receptor chains protect myelin basic protein‐specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 1998;188;1883–1894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Buenafe AC, Tsu RC, Bebo BJ, Vandenbark AA, Offner H. Myelin basic protein‐specific and TCR Vβ, 8.2‐specific T‐cell lines from TCR Vβ 8.2 transgenic mice utilize the same V alpha and V hew genes: specificity associated with the Vα CDR3‐Jα region. J Neurosci Res 1997;47:489–499. [PubMed] [Google Scholar]
- 104.Siklodi B., Jacobs, R , Vandenbark, AA , Offner, H. Neonatal exposure of TCR BV8S2 transgenic mice to recombinant TCR BV8S2 results in reduced T cell proliferation and elevated antibody response to BV8S2 and increased severity of FAE. J Neurosci Res 1998;52:750–756. [DOI] [PubMed] [Google Scholar]
- 105.Offner H, Hashim GA, Vandenbark AA. T cell receptor peptide therapy triggers autoregulation of experimental encephalomyelitis. Science 1991;251:430–432. [DOI] [PubMed] [Google Scholar]
- 106.Kumar V, Sercarz E. Dysregulation of potentially pathogenic self reactivity is crucial for the manifestation of clinical autoimmunity. J Neurosci Res 1996;45:334–339. [DOI] [PubMed] [Google Scholar]
- 107.Critchfield JM, _et al._T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 1994;263:1139–1143. [DOI] [PubMed] [Google Scholar]
- 108.Boehme SA, Lenardo MJ. Propriocidal apoptosis of mature T lymphocytes occurs at S phase of the cell cycle. Eur J Immunol 1993;23:1552–1560. [DOI] [PubMed] [Google Scholar]
- 109.Marusic S, Tonegawa S. Tolerance induction and autoimmune encephalomyelitis amelioration after administration of myelin basic protein‐derived peptide. J Exp Med 1998;186:507–515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Chen Y, Inobe J, Kuchroo VK, Baron JL, Janeway CA Jr, Weiner HL. Oral tolerance in myelin basic protein T‐cell receptor transgenic mice; suppression of autoimmune encephalomyelitis and dose‐dependent induction of regulatory cells. Proc Natl Acad Sci USA 1996;93:388–391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Whitacre CC, Gienapp IE, Meyer A, Cox KL, Javed N. Treatment of autoimmune disease by oral tolerance to autoantigens. Clin Immunol Immunopathol 1996;80; S31–S39. [DOI] [PubMed] [Google Scholar]