Origin and sagittal termination areas of cerebro-cerebellar climbing fibre paths in the cat (original) (raw)

Abstract

Climbing fibre responses were recorded in the cerebellar anterior lobe on stimulation of the cerebral cortex. A zonal pattern was demonstrated in the cortical projection, which was related to the cerebellar sagittal zones, as identified from peripheral climbing fibre input. In all zones, except c2, a co-variation of the responses evoked on peripheral nerve stimulation and on stimulation of the corresponding part of the sensorimotor cortex was found. There was a bilateral projection to the a, b, c2 and d1 zones which also, to a varying extent, receive a bilateral peripheral input. The x, c1 and c3 zones, receiving an ipsilateral peripheral input, were activated exclusively from the contralateral cortex. Stimulation of the posterior sigmoid gyrus (p.s.g.) evoked responses in all the zones. These responses had, in all zones except d1, lower thresholds and shorter latencies than the responses from other cortical areas. Two separate p.s.g. areas were shown to project to the pars intermedia zones (c1, c2, c3 and d1), the lateral area to the caudal parts and the medial area to the rostral parts of the zones. In contrast, the b zone received a projection from only one p.s.g. area, centred between, but overlapping, the two areas projecting to the pars intermedia zones. Stimulation of the anterior sigmoid gyrus evoked short-latency responses in the d1 zone and long-latency responses in all other zones. Stimulation of the first and second somatosensory areas (SI and SII) was generally less effective in evoking climbing fibre responses than was stimulation of the p.s.g. The only exception was the c2 zone, in which responses were evoked from the SII with nearly as low thresholds and short latencies as on p.s.g. stimulation. From the parietal cortex, long-latency responses were regularly evoked in the d1 zone and less frequently in the a, b and c2 zones.

257

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN P., ECCLES J. C., OSHIMA T., SCHMIDT R. F. MECHANISMS OF SYNAPTIC TRANSMISSION IN THE CUNEATE NUCLEUS. J Neurophysiol. 1964 Nov;27:1096–1116. doi: 10.1152/jn.1964.27.6.1096. [DOI] [PubMed] [Google Scholar]
  2. ANDERSEN P., ECCLES J. C., SCHMIDT R. F., YOKOTA T. DEPOLARIZATION OF PRESYNAPTIC FIBERS IN THE CUNEATE NUCLEUS. J Neurophysiol. 1964 Jan;27:92–106. doi: 10.1152/jn.1964.27.1.92. [DOI] [PubMed] [Google Scholar]
  3. ANDERSEN P., ECCLES J. C., SCHMIDT R. F., YOKOTA T. IDENTIFICATION OF RELAY CELLS AND INTERNEURONS IN THE CUNEATE NUCLEUS. J Neurophysiol. 1964 Nov;27:1080–1095. doi: 10.1152/jn.1964.27.6.1080. [DOI] [PubMed] [Google Scholar]
  4. ANDERSEN P., ECCLES J. C., SCHMIDT R. F., YOKOTA T. SLOW POTENTIAL WAVES PRODUCED IN THE CUNEATE NUCLEUS BY CUTANEOUS VOLLEYS AND BY CORTICAL STIMULATION. J Neurophysiol. 1964 Jan;27:78–91. doi: 10.1152/jn.1964.27.1.78. [DOI] [PubMed] [Google Scholar]
  5. ANDERSEN P., ECCLES J. C., SEARS T. A. CORTICALLY EVOKED DEPOLARIZATION OF PRIMARY AFFERENT FIBERS IN THE SPINAL CORD. J Neurophysiol. 1964 Jan;27:63–77. doi: 10.1152/jn.1964.27.1.63. [DOI] [PubMed] [Google Scholar]
  6. ANDERSEN P., ECCLES J. C., SEARS T. A. Presynaptic inhibitory action of cerebral cortex on the spinal cord. Nature. 1962 May 26;194:740–741. doi: 10.1038/194740a0. [DOI] [PubMed] [Google Scholar]
  7. Abdelmoumène M., Besson J. M., Aléonard P. Cortical areas exerting presynaptic inhibitory action on the spinal cord in cat and monkey. Brain Res. 1970 Jun 3;20(2):327–329. doi: 10.1016/0006-8993(70)90301-x. [DOI] [PubMed] [Google Scholar]
  8. Allen G. I., Azzena G. B., Ohno T. Cerebellar Purkyne cell responses to inputs from sensorimotor cortex. Exp Brain Res. 1974;20(3):239–254. doi: 10.1007/BF00238315. [DOI] [PubMed] [Google Scholar]
  9. Allen G. I., Azzena G. B., Ohno T. Pontine and non-pontine pathways mediating early mossy fiber responses from sensorimotor cortex to cerebellum in the cat. Exp Brain Res. 1979 Jul 2;36(2):359–374. doi: 10.1007/BF00238917. [DOI] [PubMed] [Google Scholar]
  10. Allen G. I., Azzena G. B., Ohno T. Somatotopically organized inputs from fore- and hindlimb areas of sensorimotor cortex to cerebellar Purkyne cells. Exp Brain Res. 1974;20(3):255–272. doi: 10.1007/BF00238316. [DOI] [PubMed] [Google Scholar]
  11. Allen G. I., Azzena G. B., Ono T. Contribution of the cerebro-reticulo-cerebellar pathway to the early mossy fibre response in the cerebellar cortex. Brain Res. 1972 Sep 29;44(2):670–675. doi: 10.1016/0006-8993(72)90333-2. [DOI] [PubMed] [Google Scholar]
  12. Andersson G., Eriksson L. Spinal, trigeminal, and cortical climbing fibre paths to the lateral vermis of the cerebellar anterior lobe in the cat. Exp Brain Res. 1981;44(1):71–81. doi: 10.1007/BF00238750. [DOI] [PubMed] [Google Scholar]
  13. Andersson G., Oscarsson O. Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res. 1978 Aug 15;32(4):565–579. doi: 10.1007/BF00239553. [DOI] [PubMed] [Google Scholar]
  14. Armand J., Kuypers H. G. Cells of origin of crossed and uncrossed corticospinal fibers in the cat: a quantitative horseradish peroxidase study. Exp Brain Res. 1980;40(1):23–34. doi: 10.1007/BF00236659. [DOI] [PubMed] [Google Scholar]
  15. Armstrong B. D., Harvey R. J. Responses in the inferior olive to stimulation of the cerebellar and cerebral cortices in the cat. J Physiol. 1966 Dec;187(3):553–574. doi: 10.1113/jphysiol.1966.sp008108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Armstrong D. M. Functional significance of connections of the inferior olive. Physiol Rev. 1974 Apr;54(2):358–417. doi: 10.1152/physrev.1974.54.2.358. [DOI] [PubMed] [Google Scholar]
  17. Armstrong D. M., Harvey R. J. Responses to a spino-olivo-cerebellar pathway in the cat. J Physiol. 1968 Jan;194(1):147–168. doi: 10.1113/jphysiol.1968.sp008399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Asanuma H., Babb R. S., Mori A., Waters R. S. Input-output relationships in cat's motor cortex after pyramidal section. J Neurophysiol. 1981 Sep;46(3):694–703. doi: 10.1152/jn.1981.46.3.694. [DOI] [PubMed] [Google Scholar]
  19. Barmack N. H., Hess D. T. Multiple-unit activity evoked in dorsal cap of inferior olive of the rabbit by visual stimulation. J Neurophysiol. 1980 Jan;43(1):151–164. doi: 10.1152/jn.1980.43.1.151. [DOI] [PubMed] [Google Scholar]
  20. Barmack N. H., Simpson J. I. Effects of microlesions of dorsal cap of inferior olive of rabbits on optokinetic and vestibuloocular reflexes. J Neurophysiol. 1980 Jan;43(1):182–206. doi: 10.1152/jn.1980.43.1.182. [DOI] [PubMed] [Google Scholar]
  21. Batini C., Corvisier J., Destombes J., Gioanni H., Everett J. The climbing fibers of the cerebellar cortex, their origin and pathways in cat. Exp Brain Res. 1976 Nov 23;26(4):407–422. doi: 10.1007/BF00234222. [DOI] [PubMed] [Google Scholar]
  22. Berkley K. J., Worden I. G. [Projections to the inferior olive of the cat. I. Comparisons of input from the dorsal column nuclei, the lateral cervical nucleus, the spino-olivary pathways, the cerebral cortex and the cerebellum]. J Comp Neurol. 1978 Jul 15;180(2):237–251. doi: 10.1002/cne.901800204. [DOI] [PubMed] [Google Scholar]
  23. Bishop G. A., McCrea R. A., Kitai S. T. A horseradish peroxidase study of the cortico-olivary projection in the cat. Brain Res. 1976 Nov 5;116(2):306–311. doi: 10.1016/0006-8993(76)90908-2. [DOI] [PubMed] [Google Scholar]
  24. Brodal A., Kawamura K. Olivocerebellar projection: a review. Adv Anat Embryol Cell Biol. 1980;64:IVIII, 1-140. [PubMed] [Google Scholar]
  25. Brown J. T., Chan-Palay V., Palay S. L. A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. J Comp Neurol. 1977 Nov 1;176(1):1–22. doi: 10.1002/cne.901760102. [DOI] [PubMed] [Google Scholar]
  26. CARPENTER D., LUNDBERG A., NORRSELL U. PRIMARY AFFERENT DEPOLARIZATION EVOKED FROM THE SENSORIMOTOR CORTEX. Acta Physiol Scand. 1963 Sep-Oct;59:126–142. doi: 10.1111/j.1748-1716.1963.tb02729.x. [DOI] [PubMed] [Google Scholar]
  27. Cervetto L., Marchesi G. F., Strata P. Electrophysiological investigations on the pathways from cerebral cortex to the anterior lobe of cerebellum. Arch Ital Biol. 1969 Jul;107(2):85–104. [PubMed] [Google Scholar]
  28. Crill W. E., Kennedy T. T. Inferior olive of the cat: intracellular recording. Science. 1967 Aug 11;157(3789):716–718. doi: 10.1126/science.157.3789.716. [DOI] [PubMed] [Google Scholar]
  29. Crill W. E. Unitary multiple-spiked responses in cat inferior olive nucleus. J Neurophysiol. 1970 Mar;33(2):199–209. doi: 10.1152/jn.1970.33.2.199. [DOI] [PubMed] [Google Scholar]
  30. Desclin J. C. Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res. 1974 Sep 13;77(3):365–384. doi: 10.1016/0006-8993(74)90628-3. [DOI] [PubMed] [Google Scholar]
  31. Eccles J. C., Provini L., Strata P., Táboríková H. Analysis of electrical potentials evoked in the cerebellar anterior lobe by stimulation of hindlimb and forelimb nerves. Exp Brain Res. 1968;6(3):171–194. doi: 10.1007/BF00235123. [DOI] [PubMed] [Google Scholar]
  32. Ekerot C. F., Larson B., Oscarsson O. Information carried by the spinocerebellar paths. Prog Brain Res. 1979;50:79–90. doi: 10.1016/S0079-6123(08)60809-2. [DOI] [PubMed] [Google Scholar]
  33. Ekerot C. F., Larson B. The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp Brain Res. 1979 Jul 2;36(2):201–217. doi: 10.1007/BF00238905. [DOI] [PubMed] [Google Scholar]
  34. Ekerot C. F., Larson B. The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Exp Brain Res. 1979 Jul 2;36(2):219–232. doi: 10.1007/BF00238906. [DOI] [PubMed] [Google Scholar]
  35. Fennell E., Rowe M. J. Sensorimotor cortical influences on the climbing fibre input to cerebellar Purkyne cells. Brain Res. 1973 Sep 28;60(1):263–266. doi: 10.1016/0006-8993(73)90868-8. [DOI] [PubMed] [Google Scholar]
  36. GORDON G., JUKES M. G. DESCENDING INFLUENCES ON THE EXTEROCEPTIVE ORGANIZATIONS OF THE CAT'S GRACILE NUCLEUS. J Physiol. 1964 Sep;173:291–319. doi: 10.1113/jphysiol.1964.sp007457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gordon M., Rubia F. J., Strata P. The effect of pentothal on the activity evoked in the cerebellar cortex. Exp Brain Res. 1973 Mar 29;17(1):50–62. doi: 10.1007/BF00234563. [DOI] [PubMed] [Google Scholar]
  38. HASSLER R., MUHS-CLEMENT K. ARCHITEKTONISCHER AUFBAU DES SENSOMOTORISCHEN UND PARIETALEN CORTEX DE KATZE. J Hirnforsch. 1964;7:377–420. [PubMed] [Google Scholar]
  39. Hayes N. L., Rustioni A. Descending projections from brainstem and sensorimotor cortex to spinal enlargements in the cat. Single and double retrograde tracer studies. Exp Brain Res. 1981;41(2):89–107. doi: 10.1007/BF00236598. [DOI] [PubMed] [Google Scholar]
  40. Hongo T., Jankowska E. Effects from the sensorimotor cortex on the spinal cord in cats with transected pyramids. Exp Brain Res. 1967;3(2):117–134. doi: 10.1007/BF00233257. [DOI] [PubMed] [Google Scholar]
  41. Hongo T., Okada Y. Cortically evoked pre- and postsynaptic inhibition of impulse transmission to the dorsal spinocerebellar tract. Exp Brain Res. 1967;3(2):163–177. doi: 10.1007/BF00233260. [DOI] [PubMed] [Google Scholar]
  42. Hongo T., Okada Y., Sato M. Corticofugal influences on transmission to the dorsal spinocerebellar tract from hindlimb primary afferents. Exp Brain Res. 1967;3(2):135–149. doi: 10.1007/BF00233258. [DOI] [PubMed] [Google Scholar]
  43. JABBUR S. J., TOWE A. L. Cortical excitation of neurons in dorsal column nuclei of cat, including an analysis of pathways. J Neurophysiol. 1961 Sep;24:499–509. doi: 10.1152/jn.1961.24.5.499. [DOI] [PubMed] [Google Scholar]
  44. Jeneskog T. On climbing fibre projections to cerebellar paramedian lobule activated from mesencephalon in the cat. Brain Res. 1981 Apr 27;211(1):135–140. doi: 10.1016/0006-8993(81)90072-x. [DOI] [PubMed] [Google Scholar]
  45. Jeneskog T. Parallel activation of dynamic fusimotor neurones and a climbing fibre system from the cat brain stem. I. Effects from the rubral region. Acta Physiol Scand. 1974 Jun;91(2):223–242. doi: 10.1111/j.1748-1716.1974.tb05680.x. [DOI] [PubMed] [Google Scholar]
  46. Jeneskog T. Parallel activation of dynamic fusimotor neurones and a climbing fibre system from the cat brain stem. II. Effects from the inferior olivary region. Acta Physiol Scand. 1974 Sep;92(1):66–83. doi: 10.1111/j.1748-1716.1974.tb05723.x. [DOI] [PubMed] [Google Scholar]
  47. Kitai S. T., Oshima T., Provini L., Tsukahara N. Cerebro-cerebellar connections mediated by fast and slow conducting pyramidal tract fibres of the cat. Brain Res. 1969 Sep;15(1):267–271. doi: 10.1016/0006-8993(69)90329-1. [DOI] [PubMed] [Google Scholar]
  48. LARSELL O. The cerebellum of the cat and the monkey. J Comp Neurol. 1953 Aug;99(1):135–199. doi: 10.1002/cne.900990110. [DOI] [PubMed] [Google Scholar]
  49. LEVITT M., CARRERAS M., LIU C. N., CHAMBERS W. W. PYRAMIDAL AND EXTRAPYRAMIDAL MODULATION OF SOMATOSENSORY ACTIVITY IN GRACILE AND CUNEATE NUCLEI. Arch Ital Biol. 1964 Apr 18;102:197–229. [PubMed] [Google Scholar]
  50. LIVINGSTON A., PHILLIPS C. G. Maps and thresholds for the sensorimotor cortex of the cat. Q J Exp Physiol Cogn Med Sci. 1957 Apr;42(2):190–205. doi: 10.1113/expphysiol.1957.sp001250. [DOI] [PubMed] [Google Scholar]
  51. LUNDBERG A., NORRSELL U., VOORHOEVE P. EFFECTS FROM THE SENSORIMOTOR CORTEX ON ASCENDING SPINAL PATHWAYS. Acta Physiol Scand. 1963 Dec;59:462–473. doi: 10.1111/j.1748-1716.1963.tb02762.x. [DOI] [PubMed] [Google Scholar]
  52. LUNDBERG A., VOORHOEVE P. Effects from the pyramidal tract on spinal reflex arcs. Acta Physiol Scand. 1962 Nov-Dec;56:201–219. doi: 10.1111/j.1748-1716.1962.tb02498.x. [DOI] [PubMed] [Google Scholar]
  53. Landgren S., Silfvenius H. Projection to cerebral cortex of group I muscle afferents from the cat's hind limb. J Physiol. 1969 Feb;200(2):353–372. doi: 10.1113/jphysiol.1969.sp008698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Larson B., Miller S., Oscarsson O. A spinocerebellar climbing fibre path activated by the flexor reflex afferents from all four limbs. J Physiol. 1969 Aug;203(3):641–649. doi: 10.1113/jphysiol.1969.sp008883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Larson B., Miller S., Oscarsson O. Termination and functional organization of the dorsolateral spino-olivocerebellar path. J Physiol. 1969 Aug;203(3):611–640. doi: 10.1113/jphysiol.1969.sp008882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Leicht R., Roowe M. J., Schmidt R. F. Inhibition of cerebellar climbing fibre activity by stimulation of precruciate cortex. Brain Res. 1972 Aug 25;43(2):640–644. doi: 10.1016/0006-8993(72)90421-0. [DOI] [PubMed] [Google Scholar]
  57. Leicht R., Rowe M. J., Schmidt R. F. Cutaneous convergence on to the climbing fibre input to cerebellar Purkyne cells. J Physiol. 1973 Feb;228(3):601–618. doi: 10.1113/jphysiol.1973.sp010102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Marr D. A theory of cerebellar cortex. J Physiol. 1969 Jun;202(2):437–470. doi: 10.1113/jphysiol.1969.sp008820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Miles T. S., Wiesendanger M. Climbing fibre inputs to cerebellar Purkinje cells from trigeminal cutaneous afferents and the SI face area of the cerebral cortex in the cat. J Physiol. 1975 Feb;245(2):425–445. doi: 10.1113/jphysiol.1975.sp010854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Miles T. S., Wiesendanger M. Organization of climbing fibre projections to the cerebellar cortex from trigeminal cutaneous afferents and from the SI face area of the cerebral cortex in the cat. J Physiol. 1975 Feb;245(2):409–424. doi: 10.1113/jphysiol.1975.sp010853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Miller S., Nezlina N., Oscarsson O. Climbing fibre projection to cerebellar anterior lobe activated from structures in midbrain and from spinal cord. Brain Res. 1969 Jun;14(1):234–236. doi: 10.1016/0006-8993(69)90046-8. [DOI] [PubMed] [Google Scholar]
  62. Miller S., Nezlina N., Oscarsson O. Projection and convergence patterns in climbing fibre paths to cerebellar anterior lobe activated from cerebral cortex and spinal cord. Brain Res. 1969 Jun;14(1):230–233. doi: 10.1016/0006-8993(69)90045-6. [DOI] [PubMed] [Google Scholar]
  63. Nieoullon A., Rispal-Padel L. Somatotopic localization in cat motor cortex. Brain Res. 1976 Apr 9;105(3):405–422. doi: 10.1016/0006-8993(76)90590-4. [DOI] [PubMed] [Google Scholar]
  64. OSCARSSON O., ROSEN I. PROJECTION TO CEREBRAL CORTEX OF LARGE MUSCLE-SPINDLE AFFERENTS IN FORELIMB NERVES OF THE CAT. J Physiol. 1963 Dec;169:924–945. doi: 10.1113/jphysiol.1963.sp007305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Oka H., Jinnai K. Electrophysiological study of parvocellular red nucleus neurons. Brain Res. 1978 Jun 23;149(1):239–246. doi: 10.1016/0006-8993(78)90605-4. [DOI] [PubMed] [Google Scholar]
  66. Oka H., Jinnai K., Yamamoto T. The parieto-rubro-olivary pathway in the cat. Exp Brain Res. 1979 Sep;37(1):115–125. doi: 10.1007/BF01474258. [DOI] [PubMed] [Google Scholar]
  67. Oka H., Yasuda T., Jinnai K., Yoneda Y. Reexamination of cerebellar responses to stimulation of sensorimotor areas of the cerebral cortex. Brain Res. 1976 Dec 17;118(2):312–319. doi: 10.1016/0006-8993(76)90717-4. [DOI] [PubMed] [Google Scholar]
  68. Olsson K. A., Landgren S. Facilitation and inhibition of jaw reflexes evoked by electrical stimulation of the cat's cerebral cortex. Exp Brain Res. 1980;39(2):149–164. doi: 10.1007/BF00237546. [DOI] [PubMed] [Google Scholar]
  69. Oscarsson O., Rosén I. Short-latency projections to the cat's cerebral cortex from skin and muscle afferents in the contralateral forelimb. J Physiol. 1966 Jan;182(1):164–184. doi: 10.1113/jphysiol.1966.sp007816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Oscarsson O., Sjölund B. The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp Brain Res. 1977 Jul 15;28(5):469–486. doi: 10.1007/BF00236471. [DOI] [PubMed] [Google Scholar]
  71. Pappas C. L., Strick P. L. Physiological demonstration of multiple representation in the forelimb region of the cat motor cortex. J Comp Neurol. 1981 Aug 20;200(4):481–490. doi: 10.1002/cne.902000403. [DOI] [PubMed] [Google Scholar]
  72. Provini L., Redman S., Strata P. Mossy and climbing fibre organization on the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex. Exp Brain Res. 1968;6(3):216–233. doi: 10.1007/BF00235125. [DOI] [PubMed] [Google Scholar]
  73. Rowe M. J. Cerebral cortical areas associated with the activation of climbing fibre input to cerebellar Purkinje cells. Arch Ital Biol. 1977 Apr;115(2):79–93. [PubMed] [Google Scholar]
  74. Rowe M. J. Topography of inhibitory actions from the cerebral cortex on the climbing fibre input to cerebellar Purkinje cells. Arch Ital Biol. 1977 Apr;115(2):95–107. [PubMed] [Google Scholar]
  75. Sasaki K., Oka H., Matsuda Y., Shimono T., Mizuno N. Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Exp Brain Res. 1975 Jul 11;23(1):91–102. doi: 10.1007/BF00238732. [DOI] [PubMed] [Google Scholar]
  76. Sousa-Pinto A., Brodal A. Demonstration of a somatotopical pattern in the cortico-olivary projection in the cat. An experimental-anatomical study. Exp Brain Res. 1969;8(4):364–386. doi: 10.1007/BF00234382. [DOI] [PubMed] [Google Scholar]
  77. Sousa-Pinto A. Experimental anatomical demonstration of a cortico-olivary projection from area 6 (supplementary motor area?) in the cat. Brain Res. 1969 Nov;16(1):73–83. doi: 10.1016/0006-8993(69)90086-9. [DOI] [PubMed] [Google Scholar]
  78. WALBERG F. Descending connections to the inferior olive; an experimental study in the cat. J Comp Neurol. 1956 Feb;104(1):77–173. doi: 10.1002/cne.901040107. [DOI] [PubMed] [Google Scholar]