Mechanical stability of single DNA molecules (original) (raw)

Abstract

Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (</=10 mM NaCl), while high ionic strength buffers (1 M NaCl) stabilize the double-helical conformation. The mechanical energy that can be deposited in the DNA double helix before force induced melting occurs was found to decrease with increasing temperature. This energy correlates with the base-pairing free enthalpy DeltaG(bp)(T) of DNA. Experiments with pure poly(dG-dC) and poly(dA-dT) DNA sequences again revealed a close correlation between the mechanical energies at which these sequences melt with base pairing free enthalpies DeltaG(bp)(sequence): while the melting transition occurs between 65 and 200 pN in lambda-phage DNA, depending on the loading rate, the melting transition is shifted to approximately 300 pN for poly(dG-dC) DNA, whereas poly(dA-dT) DNA melts at a force of 35 pN.

Full Text

The Full Text of this article is available as a PDF (138.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahsan A., Rudnick J., Bruinsma R. Elasticity theory of the B-DNA to S-DNA transition. Biophys J. 1998 Jan;74(1):132–137. doi: 10.1016/S0006-3495(98)77774-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allemand J. F., Bensimon D., Lavery R., Croquette V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14152–14157. doi: 10.1073/pnas.95.24.14152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumann C. G., Smith S. B., Bloomfield V. A., Bustamante C. Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6185–6190. doi: 10.1073/pnas.94.12.6185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bensimon D, Simon AJ, Croquette V, V, Bensimon A. Stretching DNA with a receding meniscus: Experiments and models. Phys Rev Lett. 1995 Jun 5;74(23):4754–4757. doi: 10.1103/PhysRevLett.74.4754. [DOI] [PubMed] [Google Scholar]
  5. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  6. Breslauer K. J., Frank R., Blöcker H., Marky L. A. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746–3750. doi: 10.1073/pnas.83.11.3746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
  8. Duguid J. G., Bloomfield V. A., Benevides J. M., Thomas G. J., Jr DNA melting investigated by differential scanning calorimetry and Raman spectroscopy. Biophys J. 1996 Dec;71(6):3350–3360. doi: 10.1016/S0006-3495(96)79528-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Essevaz-Roulet B., Bockelmann U., Heslot F. Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11935–11940. doi: 10.1073/pnas.94.22.11935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  12. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE. How strong is a covalent bond? . Science. 1999 Mar 12;283(5408):1727–1730. doi: 10.1126/science.283.5408.1727. [DOI] [PubMed] [Google Scholar]
  13. Kasas S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold M., Bustamante C., Kool E. T., Kashlev M., Hansma P. K. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry. 1997 Jan 21;36(3):461–468. doi: 10.1021/bi9624402. [DOI] [PubMed] [Google Scholar]
  14. Kosikov K. M., Gorin A. A., Zhurkin V. B., Olson W. K. DNA stretching and compression: large-scale simulations of double helical structures. J Mol Biol. 1999 Jun 25;289(5):1301–1326. doi: 10.1006/jmbi.1999.2798. [DOI] [PubMed] [Google Scholar]
  15. Lebrun A., Lavery R. Modelling extreme stretching of DNA. Nucleic Acids Res. 1996 Jun 15;24(12):2260–2267. doi: 10.1093/nar/24.12.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee G. U., Chrisey L. A., Colton R. J. Direct measurement of the forces between complementary strands of DNA. Science. 1994 Nov 4;266(5186):771–773. doi: 10.1126/science.7973628. [DOI] [PubMed] [Google Scholar]
  17. Leger J. F., Robert J., Bourdieu L., Chatenay D., Marko J. F. RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12295–12299. doi: 10.1073/pnas.95.21.12295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacKerell A. D., Jr, Lee G. U. Structure, force, and energy of a double-stranded DNA oligonucleotide under tensile loads. Eur Biophys J. 1999;28(5):415–426. doi: 10.1007/s002490050224. [DOI] [PubMed] [Google Scholar]
  19. Magazzú G., Bottaro G., Cataldo F., Iacono G., Di Donato F., Patane R., Cavataio F., Maltese I., Romano C., Arco A. Increasing incidence of childhood celiac disease in Sicily: results of a multicenter study. Acta Paediatr. 1994 Oct;83(10):1065–1069. doi: 10.1111/j.1651-2227.1994.tb12987.x. [DOI] [PubMed] [Google Scholar]
  20. Marszalek P. E., Oberhauser A. F., Pang Y. P., Fernandez J. M. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature. 1998 Dec 17;396(6712):661–664. doi: 10.1038/25322. [DOI] [PubMed] [Google Scholar]
  21. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  22. Moy V. T., Florin E. L., Gaub H. E. Intermolecular forces and energies between ligands and receptors. Science. 1994 Oct 14;266(5183):257–259. doi: 10.1126/science.7939660. [DOI] [PubMed] [Google Scholar]
  23. Perkins T. T., Smith D. E., Chu S. Single polymer dynamics in an elongational flow. Science. 1997 Jun 27;276(5321):2016–2021. doi: 10.1126/science.276.5321.2016. [DOI] [PubMed] [Google Scholar]
  24. Perkins T. T., Smith D. E., Larson R. G., Chu S. Stretching of a single tethered polymer in a uniform flow. Science. 1995 Apr 7;268(5207):83–87. doi: 10.1126/science.7701345. [DOI] [PubMed] [Google Scholar]
  25. Radmacher M., Fritz M., Hansma H. G., Hansma P. K. Direct observation of enzyme activity with the atomic force microscope. Science. 1994 Sep 9;265(5178):1577–1579. doi: 10.1126/science.8079171. [DOI] [PubMed] [Google Scholar]
  26. Rief M., Clausen-Schaumann H., Gaub H. E. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol. 1999 Apr;6(4):346–349. doi: 10.1038/7582. [DOI] [PubMed] [Google Scholar]
  27. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  28. Rief M, Oesterhelt F, Heymann B, Gaub HE. Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy. Science. 1997 Feb 28;275(5304):1295–1297. doi: 10.1126/science.275.5304.1295. [DOI] [PubMed] [Google Scholar]
  29. Schildkraut C. Dependence of the melting temperature of DNA on salt concentration. Biopolymers. 1965;3(2):195–208. doi: 10.1002/bip.360030207. [DOI] [PubMed] [Google Scholar]
  30. Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
  31. Smith S. B., Finzi L., Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 1992 Nov 13;258(5085):1122–1126. doi: 10.1126/science.1439819. [DOI] [PubMed] [Google Scholar]
  32. Strick T. R., Allemand J. F., Bensimon D., Bensimon A., Croquette V. The elasticity of a single supercoiled DNA molecule. Science. 1996 Mar 29;271(5257):1835–1837. doi: 10.1126/science.271.5257.1835. [DOI] [PubMed] [Google Scholar]
  33. Strick T. R., Allemand J. F., Bensimon D., Croquette V. Behavior of supercoiled DNA. Biophys J. 1998 Apr;74(4):2016–2028. doi: 10.1016/S0006-3495(98)77908-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Strunz T., Oroszlan K., Schäfer R., Güntherodt H. J. Dynamic force spectroscopy of single DNA molecules. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11277–11282. doi: 10.1073/pnas.96.20.11277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wang M. D., Schnitzer M. J., Yin H., Landick R., Gelles J., Block S. M. Force and velocity measured for single molecules of RNA polymerase. Science. 1998 Oct 30;282(5390):902–907. doi: 10.1126/science.282.5390.902. [DOI] [PubMed] [Google Scholar]
  36. Yin H., Wang M. D., Svoboda K., Landick R., Block S. M., Gelles J. Transcription against an applied force. Science. 1995 Dec 8;270(5242):1653–1657. doi: 10.1126/science.270.5242.1653. [DOI] [PubMed] [Google Scholar]