Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation (original) (raw)

Abstract

Atomic force microscopy (AFM) experiments have provided intriguing insights into the mechanical unfolding of proteins such as titin I27 from muscle, but will the same be possible for proteins that are not physiologically required to resist force? We report the results of AFM experiments on the forced unfolding of barnase in a chimeric construct with I27. Both modules are independently folded and stable in this construct and have the same thermodynamic and kinetic properties as the isolated proteins. I27 can be identified in the AFM traces based on its previous characterization, and distinct, irregular low-force peaks are observed for barnase. Molecular dynamics simulations of barnase unfolding also show that it unfolds at lower forces than proteins with mechanical function. The unfolding pathway involves the unraveling of the protein from the termini, with much more native-like secondary and tertiary structure being retained in the transition state than is observed in simulations of thermal unfolding or experimentally, using chemical denaturant. Our results suggest that proteins that are not selected for tensile strength may not resist force in the same way as those that are, and that proteins with similar unfolding rates in solution need not have comparable unfolding properties under force.

Full Text

The Full Text of this article is available as a PDF (981.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso D. O., DeArmond S. J., Cohen F. E., Daggett V. Mapping the early steps in the pH-induced conformational conversion of the prion protein. Proc Natl Acad Sci U S A. 2001 Feb 27;98(6):2985–2989. doi: 10.1073/pnas.061555898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axe D. D., Foster N. W., Fersht A. R. A search for single substitutions that eliminate enzymatic function in a bacterial ribonuclease. Biochemistry. 1998 May 19;37(20):7157–7166. doi: 10.1021/bi9804028. [DOI] [PubMed] [Google Scholar]
  3. Bond C. J., Wong K. B., Clarke J., Fersht A. R., Daggett V. Characterization of residual structure in the thermally denatured state of barnase by simulation and experiment: description of the folding pathway. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13409–13413. doi: 10.1073/pnas.94.25.13409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buckle A. M., Henrick K., Fersht A. R. Crystal structural analysis of mutations in the hydrophobic cores of barnase. J Mol Biol. 1993 Dec 5;234(3):847–860. doi: 10.1006/jmbi.1993.1630. [DOI] [PubMed] [Google Scholar]
  5. Bustamante C., Marko J. F., Siggia E. D., Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994 Sep 9;265(5178):1599–1600. doi: 10.1126/science.8079175. [DOI] [PubMed] [Google Scholar]
  6. Bycroft M., Ludvigsen S., Fersht A. R., Poulsen F. M. Determination of the three-dimensional solution structure of barnase using nuclear magnetic resonance spectroscopy. Biochemistry. 1991 Sep 3;30(35):8697–8701. doi: 10.1021/bi00099a030. [DOI] [PubMed] [Google Scholar]
  7. Carrion-Vazquez M., Oberhauser A. F., Fowler S. B., Marszalek P. E., Broedel S. E., Clarke J., Fernandez J. M. Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3694–3699. doi: 10.1073/pnas.96.7.3694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clarke J., Fersht A. R. Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation. Biochemistry. 1993 Apr 27;32(16):4322–4329. doi: 10.1021/bi00067a022. [DOI] [PubMed] [Google Scholar]
  9. Clausen-Schaumann H., Seitz M., Krautbauer R., Gaub H. E. Force spectroscopy with single bio-molecules. Curr Opin Chem Biol. 2000 Oct;4(5):524–530. doi: 10.1016/s1367-5931(00)00126-5. [DOI] [PubMed] [Google Scholar]
  10. Evans E., Ritchie K. Strength of a weak bond connecting flexible polymer chains. Biophys J. 1999 May;76(5):2439–2447. doi: 10.1016/S0006-3495(99)77399-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fisher T. E., Marszalek P. E., Fernandez J. M. Stretching single molecules into novel conformations using the atomic force microscope. Nat Struct Biol. 2000 Sep;7(9):719–724. doi: 10.1038/78936. [DOI] [PubMed] [Google Scholar]
  12. Fowler S. B., Clarke J. Mapping the folding pathway of an immunoglobulin domain: structural detail from Phi value analysis and movement of the transition state. Structure. 2001 May 9;9(5):355–366. doi: 10.1016/s0969-2126(01)00596-2. [DOI] [PubMed] [Google Scholar]
  13. Helmes M., Trombitás K., Centner T., Kellermayer M., Labeit S., Linke W. A., Granzier H. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring. Circ Res. 1999 Jun 11;84(11):1339–1352. doi: 10.1161/01.res.84.11.1339. [DOI] [PubMed] [Google Scholar]
  14. Huang S., Ratliff K. S., Schwartz M. P., Spenner J. M., Matouschek A. Mitochondria unfold precursor proteins by unraveling them from their N-termini. Nat Struct Biol. 1999 Dec;6(12):1132–1138. doi: 10.1038/70073. [DOI] [PubMed] [Google Scholar]
  15. Izrailev S., Crofts A. R., Berry E. A., Schulten K. Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc(1) complex. Biophys J. 1999 Oct;77(4):1753–1768. doi: 10.1016/S0006-3495(99)77022-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Janshoff A, Neitzert M, Oberdörfer Y, Fuchs H. Force Spectroscopy of Molecular Systems-Single Molecule Spectroscopy of Polymers and Biomolecules. Angew Chem Int Ed Engl. 2000 Sep 15;39(18):3212–3237. doi: 10.1002/1521-3773(20000915)39:18<3212::aid-anie3212>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  17. Jones D. N., Bycroft M., Lubienski M. J., Fersht A. R. Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange. FEBS Lett. 1993 Sep 27;331(1-2):165–172. doi: 10.1016/0014-5793(93)80319-p. [DOI] [PubMed] [Google Scholar]
  18. Klimov D. K., Thirumalai D. Native topology determines force-induced unfolding pathways in globular proteins. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7254–7259. doi: 10.1073/pnas.97.13.7254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lenne P. F., Raae A. J., Altmann S. M., Saraste M., Hörber J. K. States and transitions during forced unfolding of a single spectrin repeat. FEBS Lett. 2000 Jul 7;476(3):124–128. doi: 10.1016/s0014-5793(00)01704-x. [DOI] [PubMed] [Google Scholar]
  20. Li A., Daggett V. Characterization of the transition state of protein unfolding by use of molecular dynamics: chymotrypsin inhibitor 2. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10430–10434. doi: 10.1073/pnas.91.22.10430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li A., Daggett V. Identification and characterization of the unfolding transition state of chymotrypsin inhibitor 2 by molecular dynamics simulations. J Mol Biol. 1996 Mar 29;257(2):412–429. doi: 10.1006/jmbi.1996.0172. [DOI] [PubMed] [Google Scholar]
  22. Li A., Daggett V. Molecular dynamics simulation of the unfolding of barnase: characterization of the major intermediate. J Mol Biol. 1998 Jan 30;275(4):677–694. doi: 10.1006/jmbi.1997.1484. [DOI] [PubMed] [Google Scholar]
  23. Li H., Oberhauser A. F., Fowler S. B., Clarke J., Fernandez J. M. Atomic force microscopy reveals the mechanical design of a modular protein. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6527–6531. doi: 10.1073/pnas.120048697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lu H., Isralewitz B., Krammer A., Vogel V., Schulten K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J. 1998 Aug;75(2):662–671. doi: 10.1016/S0006-3495(98)77556-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lu H., Schulten K. The key event in force-induced unfolding of Titin's immunoglobulin domains. Biophys J. 2000 Jul;79(1):51–65. doi: 10.1016/S0006-3495(00)76273-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marszalek P. E., Lu H., Li H., Carrion-Vazquez M., Oberhauser A. F., Schulten K., Fernandez J. M. Mechanical unfolding intermediates in titin modules. Nature. 1999 Nov 4;402(6757):100–103. doi: 10.1038/47083. [DOI] [PubMed] [Google Scholar]
  27. Matouschek A., Serrano L., Fersht A. R. The folding of an enzyme. IV. Structure of an intermediate in the refolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):819–835. doi: 10.1016/0022-2836(92)90564-z. [DOI] [PubMed] [Google Scholar]
  28. Meiering E. M., Bycroft M., Fersht A. R. Characterization of phosphate binding in the active site of barnase by site-directed mutagenesis and NMR. Biochemistry. 1991 Nov 26;30(47):11348–11356. doi: 10.1021/bi00111a022. [DOI] [PubMed] [Google Scholar]
  29. Miroux B., Walker J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol. 1996 Jul 19;260(3):289–298. doi: 10.1006/jmbi.1996.0399. [DOI] [PubMed] [Google Scholar]
  30. Oberhauser A. F., Marszalek P. E., Erickson H. P., Fernandez J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature. 1998 May 14;393(6681):181–185. doi: 10.1038/30270. [DOI] [PubMed] [Google Scholar]
  31. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  32. Paci E., Karplus M. Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations. J Mol Biol. 1999 May 7;288(3):441–459. doi: 10.1006/jmbi.1999.2670. [DOI] [PubMed] [Google Scholar]
  33. Paci E., Karplus M. Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6521–6526. doi: 10.1073/pnas.100124597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pfuhl M., Pastore A. Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin: a new member of the I set. Structure. 1995 Apr 15;3(4):391–401. doi: 10.1016/s0969-2126(01)00170-8. [DOI] [PubMed] [Google Scholar]
  35. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  36. Rief M., Gautel M., Schemmel A., Gaub H. E. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys J. 1998 Dec;75(6):3008–3014. doi: 10.1016/S0006-3495(98)77741-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rief M., Pascual J., Saraste M., Gaub H. E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol. 1999 Feb 19;286(2):553–561. doi: 10.1006/jmbi.1998.2466. [DOI] [PubMed] [Google Scholar]
  38. Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):805–818. doi: 10.1016/0022-2836(92)90563-y. [DOI] [PubMed] [Google Scholar]
  39. Socci N. D., Onuchic J. N., Wolynes P. G. Stretching lattice models of protein folding. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2031–2035. doi: 10.1073/pnas.96.5.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wong K. B., Clarke J., Bond C. J., Neira J. L., Freund S. M., Fersht A. R., Daggett V. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding. J Mol Biol. 2000 Mar 10;296(5):1257–1282. doi: 10.1006/jmbi.2000.3523. [DOI] [PubMed] [Google Scholar]
  41. Yang G., Cecconi C., Baase W. A., Vetter I. R., Breyer W. A., Haack J. A., Matthews B. W., Dahlquist F. W., Bustamante C. Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):139–144. doi: 10.1073/pnas.97.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang B., Xu G., Evans J. S. A kinetic molecular model of the reversible unfolding and refolding of titin under force extension. Biophys J. 1999 Sep;77(3):1306–1315. doi: 10.1016/S0006-3495(99)76980-8. [DOI] [PMC free article] [PubMed] [Google Scholar]