Sequence diversity in 36 candidate genes for cardiovascular disorders (original) (raw)

Abstract

Two strategies involving whole-genome association studies have been proposed for the identification of genes involved in complex diseases. The first one seeks to characterize all common variants of human genes and to test their association with disease. The second one seeks to develop dense maps of single-nucleotide polymorphisms (SNPs) and to detect susceptibility genes through linkage disequilibrium. We performed a molecular screening of the coding and/or flanking regions of 36 candidate genes for cardiovascular diseases. All polymorphisms identified by this screening were further genotyped in 750 subjects of European descent. In the whole set of genes, the lengths explored spanned 53.8 kb in the 5' regions, 68.4 kb in exonic regions, and 13 kb in the 3' regions. The strength of linkage disequilibrium within candidate regions suggests that genomewide maps of SNPs might be efficient ways to identify new disease-susceptibility genes, provided that the maps are sufficiently dense. However, the relatively large number of polymorphisms within coding and regulatory regions of candidate genes raises the possibility that several of them might be functional and that the pattern of genotype-phenotype association might be more complex than initially envisaged, as actually has been observed in some well-characterized genes. These results argue in favor of both genomewide association studies and detailed studies of the overall sequence variation of candidate genes, as complementary approaches.

Full Text

The Full Text of this article is available as a PDF (256.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behague I., Poirier O., Nicaud V., Evans A., Arveiler D., Luc G., Cambou J. P., Scarabin P. Y., Bara L., Green F. Beta fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction. The ECTIM Study. Etude Cas-Temoins sur l'Infarctus du Myocarde. Circulation. 1996 Feb 1;93(3):440–449. doi: 10.1161/01.cir.93.3.440. [DOI] [PubMed] [Google Scholar]
  2. Cambien F., Poirier O., Mallet C., Tiret L. Coronary heart disease and genetics in epidemiologist's view. Mol Med Today. 1997 May;3(5):197–203. doi: 10.1016/s1357-4310(97)01027-7. [DOI] [PubMed] [Google Scholar]
  3. Collins D. W., Jukes T. H. Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics. 1994 Apr;20(3):386–396. doi: 10.1006/geno.1994.1192. [DOI] [PubMed] [Google Scholar]
  4. Collins F. S., Guyer M. S., Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science. 1997 Nov 28;278(5343):1580–1581. doi: 10.1126/science.278.5343.1580. [DOI] [PubMed] [Google Scholar]
  5. Davignon J., Gregg R. E., Sing C. F. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988 Jan-Feb;8(1):1–21. doi: 10.1161/01.atv.8.1.1. [DOI] [PubMed] [Google Scholar]
  6. Fumeron F., Betoulle D., Luc G., Behague I., Ricard S., Poirier O., Jemaa R., Evans A., Arveiler D., Marques-Vidal P. Alcohol intake modulates the effect of a polymorphism of the cholesteryl ester transfer protein gene on plasma high density lipoprotein and the risk of myocardial infarction. J Clin Invest. 1995 Sep;96(3):1664–1671. doi: 10.1172/JCI118207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gojobori T., Ishii K., Nei M. Estimation of average number of nucleotide substitutions when the rate of substitution varies with nucleotide. J Mol Evol. 1982;18(6):414–423. doi: 10.1007/BF01840889. [DOI] [PubMed] [Google Scholar]
  8. Kwok P. Y., Deng Q., Zakeri H., Taylor S. L., Nickerson D. A. Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. Genomics. 1996 Jan 1;31(1):123–126. doi: 10.1006/geno.1996.0019. [DOI] [PubMed] [Google Scholar]
  9. Lambert J. C., Pasquier F., Cottel D., Frigard B., Amouyel P., Chartier-Harlin M. C. A new polymorphism in the APOE promoter associated with risk of developing Alzheimer's disease. Hum Mol Genet. 1998 Mar;7(3):533–540. doi: 10.1093/hmg/7.3.533. [DOI] [PubMed] [Google Scholar]
  10. Lander E. S. The new genomics: global views of biology. Science. 1996 Oct 25;274(5287):536–539. doi: 10.1126/science.274.5287.536. [DOI] [PubMed] [Google Scholar]
  11. Li W. H., Sadler L. A. Low nucleotide diversity in man. Genetics. 1991 Oct;129(2):513–523. doi: 10.1093/genetics/129.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Li W. H., Wu C. I., Luo C. C. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J Mol Evol. 1984;21(1):58–71. doi: 10.1007/BF02100628. [DOI] [PubMed] [Google Scholar]
  13. MacLean C. J., Morton N. E. Estimation of myriad haplotype frequencies. Genet Epidemiol. 1985;2(3):263–272. doi: 10.1002/gepi.1370020304. [DOI] [PubMed] [Google Scholar]
  14. Nickerson D. A., Taylor S. L., Weiss K. M., Clark A. G., Hutchinson R. G., Stengård J., Salomaa V., Vartiainen E., Boerwinkle E., Sing C. F. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet. 1998 Jul;19(3):233–240. doi: 10.1038/907. [DOI] [PubMed] [Google Scholar]
  15. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parra H. J., Arveiler D., Evans A. E., Cambou J. P., Amouyel P., Bingham A., McMaster D., Schaffer P., Douste-Blazy P., Luc G. A case-control study of lipoprotein particles in two populations at contrasting risk for coronary heart disease. The ECTIM Study. Arterioscler Thromb. 1992 Jun;12(6):701–707. doi: 10.1161/01.atv.12.6.701. [DOI] [PubMed] [Google Scholar]
  17. Poirier O., Georges J. L., Ricard S., Arveiler D., Ruidavets J. B., Luc G., Evans A., Cambien F., Tiret L. New polymorphisms of the angiotensin II type 1 receptor gene and their associations with myocardial infarction and blood pressure: the ECTIM study. Etude Cas-Témoin de l'Infarctus du Myocarde. J Hypertens. 1998 Oct;16(10):1443–1447. doi: 10.1097/00004872-199816100-00007. [DOI] [PubMed] [Google Scholar]
  18. Poirier O., Ricard S., Behague I., Souriau C., Evans A. E., Arveiler D., Marques-Vidal P., Luc G., Roizes G., Cambien F. Detection of new variants in the apolipoprotein B (Apo B) gene by PCR-SSCP. Hum Mutat. 1996;8(3):282–285. doi: 10.1002/(SICI)1098-1004(1996)8:3<282::AID-HUMU16>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  19. Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
  20. Saiki R. K., Bugawan T. L., Horn G. T., Mullis K. B., Erlich H. A. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986 Nov 13;324(6093):163–166. doi: 10.1038/324163a0. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tiret L., Amouyel P., Rakotovao R., Cambien F., Ducimetière P. Testing for association between disease and linked marker loci: a log-linear-model analysis. Am J Hum Genet. 1991 May;48(5):926–934. [PMC free article] [PubMed] [Google Scholar]
  23. Tiret L., Rigat B., Visvikis S., Breda C., Corvol P., Cambien F., Soubrier F. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet. 1992 Jul;51(1):197–205. [PMC free article] [PubMed] [Google Scholar]
  24. Villard E., Tiret L., Visvikis S., Rakotovao R., Cambien F., Soubrier F. Identification of new polymorphisms of the angiotensin I-converting enzyme (ACE) gene, and study of their relationship to plasma ACE levels by two-QTL segregation-linkage analysis. Am J Hum Genet. 1996 Jun;58(6):1268–1278. [PMC free article] [PubMed] [Google Scholar]
  25. Vogel F., Kopun M. Higher frequencies of transitions among point mutations. J Mol Evol. 1977 Apr 29;9(2):159–180. doi: 10.1007/BF01732746. [DOI] [PubMed] [Google Scholar]